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Abstract. We establish a formal relation between quantitative and se-
mantic approximations—formalized by pre-metrics and upper closure op-
erators (ucos), respectively—by means of Galois connections. This con-
nection reveals that it is far from trivial for a pre-metric to uniquely
identify a uco, highlighting the structural constraints and, more gener-
ally, the distinct identity inherent to semantic approximations.
Building on this foundation, we introduce a general composition of se-
mantic and quantitative approximations. This allows us to define a new
confidentiality property, called Partial Abstract Non-Interference, that
measures bounded variations in program behavior over abstract prop-
erties of data. We then relate this property to Partial Completeness
in abstract interpretation, revealing a deeper connection between static
analysis precision and security guarantees.
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1 Introduction

Understanding the behavior of programs is a fundamental challenge in com-
puter science. Due to inherent undecidability, some degree of approximation
is unavoidable, both in how we observe program behavior and in how we for-
malize the properties we aim to analyze. Broadly speaking, we can distinguish
between two main paradigms of approximation: semantic and quantitative. Se-
mantic approximations capture qualitative properties of data and computations,
often abstracting over irrelevant details to retain logical or behavioral correct-
ness. Quantitative approximations, on the other hand, measure similarity or
closeness between elements using metrics or more relaxed forms of distances.

These two perspectives can be pursued independently, or combined for a
unified approach to approximation. Semantic approximations are at the heart
of abstract interpretation [14,16], a foundational framework for soundly ap-
proximating program behavior through abstractions. They are also intrinsic to
properties such as Abstract Non-Interference [24], a relaxation of classic Non-
Interference [27] that captures variations in the semantic properties that may
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influence program computations. In contrast, quantitative approximations un-
derpin distance-based properties, useful when reasoning about approximations
in a meaningful distance space. Notable examples include Approximate Non-
Interference [18], which permits some exactly quantified leakage of information,
as well as Program Continuity and Robustness [9,11,10], which ensure that ar-
bitrarily small changes to inputs only cause arbitrarily small changes to pro-
gram outputs, and Differential Privacy [20], which formalizes privacy loss as a
bounded statistical difference in output distributions. In some cases, semantic
and quantitative perspectives are combined to define a more general approxima-
tion approach. For instance, Partial Completeness in abstract interpretation [5]
leverages pre-metrics compatible with the underlying domain structure to quan-
tify precision loss in program analysis [8]. Similarly, Abstract Robustness [25],
characterizes the robustness of deep neural networks against adversarial attacks
by combining a distance over inputs with an abstraction of the outputs.

In general, semantic and quantitative approaches offer distinct perspectives
on the problem of approximation, each relying on different formal frameworks
to capture its nuances. In this work, we aim to explore whether and how these
two methodologies relate:

Are they fundamentally distinct tools for approximations, or can one be
systematically derived from the other?

Can we formalize a way to combine their respective advantages into a
unifying approximation framework?

Our Contribution. We explore a formal correspondence between semantic ap-
proximations, modeled here as upper closure operators (ucos), and quantitative
approximations, modeled here as pre-metrics. We show how semantic approxima-
tions can be derived from distance functions (and vice versa), through a process
of abstractions using Galois connections. On the one hand, this connection con-
firms that ucos can be viewed as particular instances of pre-metrics—specifically,
those that assign a distance of zero to elements sharing the same abstraction.
On the other hand, however, it is far from trivial for a pre-metric to uniquely
identify a uco, highlighting the structural constraints and, more generally, the
distinct identity inherent to semantic approximations.

Building on this foundation, we formalize a composition operator of pre-
metrics that first selects the domain of comparison and then measures distances
within this selected domain, thereby enabling a form of layered abstraction. Such
a composition, when involving a distance characterizing a semantic abstraction
and a distance characterizing a quantitative abstraction, defines a new form of
approximation, called general approximation, combining semantic and quantita-
tive approaches while keeping the two types of approximations distinct.

This approach allows us to define a new confidentiality property, called Par-
tial Abstract Non-Interference, that generalizes both Abstract Non-Interference
and Approximate Non-Interference in a unifying view by combining both se-
mantic and quantitative approximations. Partial Abstract Non-Interference al-
lows bounded variations in the abstract program behavior over inputs sharing
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a similar abstract property. We then relate this property to Partial Complete-
ness in abstract interpretation, revealing a deeper connection between bounded
(im)precision in abstract interpretation and security guarantees.

Structure of the paper. In Sec. 2 we formalize semantic approximations via
upper closure operators, and quantitative approximations by pre-metrics, re-
calling their respective definitions from the literature. Sec. 3 establishes a formal
relation between the two forms of approximations. This consists in an abstraction
process—formalized by a series of Galois connections—from the domain of pre-
metrics to the domain of ucos by passing through equivalence relations. Sec. 4 for-
mally defines a possible way to combine pre-metrics, characterizing quantitative
approximations, with distances characterizing semantic abstractions. This will
form a general approximation framework which will be used in Sec. 6 to define a
new confidentiality property based on the notion of Abstract Non-Interference,
called Partial Abstract Non-Interference that quantifies semantic variations in
the output domain. This newly defined property is then compared with the Par-
tial Completeness property to establish a relation between them. A background
on the Partial Completeness notion in abstract interpretation, and the Abstract
Non-Interference property, is provided in Sec. 5.

2 Abstractions and Distances

In many domains, approximations are a fundamental tool for simplifying rea-
soning while retaining essential properties. Broadly speaking, we can distinguish
between semantic (or qualitative) approximations, and quantitative approxima-
tions. Here we formalize semantic approximations via upper closure operators
and quantitative approximations by means of pre-metrics.

2.1 Semantic Approximations via Upper Closure Operators

Qualitative or semantic approximations preserve certain semantic properties of
the approximated data. Semantic approximations are at the hearth of abstract
interpretation [14,16], which offers a general methodology for approximating
computations by evaluating functions (e.g., program semantics) over an abstract
domain A instead of the concrete domain C. This approach is especially valuable
when exact analysis is computationally infeasible or undecidable, trading pre-
cision for decidability. In this setting, A is referred to as an abstraction of C
whenever there is a Galois Connection (GC), or a Galois Insertion (GI), be-
tween the two domains. More formally, given a partially ordered set (poset, for
short) ⟨C,≤C⟩, called the concrete domain, and a poset ⟨A,≤A⟩, called the ab-
stract domain, a GC is denoted by ⟨C,≤C⟩ −−−→←−−−α

γ
⟨A,≤A⟩ where α : C → A is the

(monotone) abstraction function, sometimes referred to as the lower adjoint, and
γ : A→ C is the (monotone) concretization function, also referred to as the upper
adjoint, both satisfying the following condition ∀a ∈ A and ∀c ∈ C:

α(c) ≤A a ⇔ c ≤C γ(a)
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A GC is a GI, denoted by ⟨C,≤C⟩ −−−→−→←−−−−
α

γ
⟨A,≤A⟩, when α ◦ γ = ι, namely when

their composition is the identity function (ι def
= λx . x ). An essential property of a

GC is that an upper/lower adjoint of a GC uniquely determines the other: α(c)
is the least element a with c ≤C γ(a), and γ(a) is the largest element c with
α(c) ≤A a. In particular, when both ⟨C,≤C⟩ and ⟨A,≤A⟩ are complete lattices,
respectively ⟨C,≤C,∨C,∧C,⊤C,⊥C⟩ and ⟨A,≤A,∨A,∧A,⊤A,⊥A⟩, then α(c) = ∧A{a ∈
A | c ≤C γ(a)} and γ(a) = ∨C{c ∈ C | α(c) ≤A a}. It turns out that α is a complete
join-morphism (sometimes also referred to as an additive function), namely for
all S ⊆ C : α(∨CS ) = ∨A{α(c) | c ∈ S}, dually γ is a complete meet-morphism
(co-additive function), namely for all S ∈ A : γ(∧AS ) = ∧A{γ(a) | a ∈ S}.

Galois connections/insertions can be equivalently formulated in terms of up-
per closure operators [16] (ucos or closures, for short).

Definition 1 (Upper Closure Operator). An upper closure operator on a
poset ⟨C,≤C⟩ is a function ρ : C→ C with the following properties ∀c, c′ ∈ C:

(i) c ≤C c
′ ⇒ ρ(c) ≤C ρ(c

′); (monotonicity)
(ii) c ≤C ρ(c); (extensivity)
(iii) ρ(ρ(c)) = ρ(c). (idempotence)

Ucos are uniquely determined by the set of their fixpoints: ρ(C ) = {c ∈
C | ρ(c) = c}. For instance, the composition γ ◦α is a uco of C. In the following,
the set of all upper closure operators on a poset C is denoted by Uco(C).

Example 1 (Sign and Parity Abstractions). The closure Sign ∈ Uco(℘(Z)) ab-
stracts a set of integers by discarding all information except the sign of its values.
It corresponds to the identity function when applied to the empty set or in case
the set contains the value zero only. The closure is defined by the set of fixpoints:

Sign(℘(Z))
def
= {∅, {0}, {z ∈ Z | z ≤ 0}, {z ∈ Z | z ≥ 0},Z}

Similarly, we can define the parity abstraction closure Par ∈ Uco(℘(Z)) as:

Par
def
= {∅,Even def

= {n ∈ Z | n mod 2 = 0},Odd def
= {n ∈ Z | n mod 2 = 1},Z} ◁

Whenever C is a complete lattice, then also Uco(C), ordered point-wise, is a
complete lattice denoted by ⟨Uco(C),⊑,⊔,⊓, λx .x , λx .⊤⟩. Here, for every ρ, η ∈
Uco(C), {ρi}i∈I ⊆ Uco(C) where I is an index set of ucos, and x ∈ C: ρ ⊑ η iff
∀c ∈ C . ρ(c) ≤C η(c) iff η(C) ⊆ ρ(C); (⊓i∈I ρi)(c) = ∧i∈I ρi(c); and (⊔i∈I ρi)(c) =
c ⇔ ∀i ∈ I . ρi(c) = c. Then, Uco(C) is the so-called lattice of abstractions of
C [16], i.e., the complete lattice of all possible abstractions (up to isomorphic
representation of their objects) of the concrete domain C.

Henceforth, we formally model semantic approximation through ucos:

Definition 2 (Semantic Approximation). Given a poset ⟨C,≤C⟩ and the ab-
straction ρ ∈ Uco(C), an element x ∈ C is semantically approximated by ρ(x ),
and the set {y ∈ C | ρ(y) = ρ(x )} represents all elements in C sharing the same
semantic approximation as x .
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pre- quasisemi- semi- quasi- pseudo- metric

(non-negativity) ✓ ✓ ✓ ✓ ✓ ✓

(if-identity) ✓ ✓ ✓ ✓ ✓ ✓

(iff-identity) ✗ ✓ ✓ ✓ ✗ ✓

(symmetry) ✗ ✗ ✓ ✗ ✓ ✓

(triangle-inequality) ✗ ✗ ✗ ✓ ✓ ✓

Fig. 1: Metrics and their relaxed forms.

Example 2. Let Int : ℘(Z)→ ℘(Z) map a set of integers S ∈ ℘(Z) to the smallest
interval [l , u] def

= {i ∈ Z | l ≤ i ≤ u} that contains it, namely such that S ⊆ [l , u],
where l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞} and l ≤ u. This is the well known interval
abstraction Int ∈ Uco(℘(Z)) [13]. So, for instance, the set of integers {0, 1, 4} can
be semantically approximated by the interval [0, 4] through Int. Moreover, the
set {{0,4}, {0,1,4}, {0,2,4}, {0,3,4}, {0,1,2,4}, {0,1,3,4}, {0,1,2,3,4}} contains all
sets of integers S such that Int(S ) = [0, 4]. ◁

2.2 Quantitative Approximations via Pre-Metrics

Quantitative approximations preserve closeness of the approximated data, typi-
cally measured through a distance function in a suitable topological space. Here,
we model distance functions using (pre-)metrics.

Let R∞ be the set of real numbers extended with the infinite symbol∞, such
that for all r ∈ R, r < ∞. Let R≥n be the restriction of R to values greater or
equal than n ∈ N. For instance, R∞

≥0
def
= {r ∈ R | r ≥ 0} ∪ {∞}.

Definition 3 (Metric). Given a non-empty set L, a metric is a binary function
δ : L× L→ R∞ with the following properties ∀x , y , z ∈ L:

(1) δ(x , y) ≥ 0; (non-negativity)
(2) x = y ⇔ δ(x , y) = 0; (iff-identity)
(3) δ(x , y) = δ(y , x ); (symmetry)
(4) δ(x , y) ≤ δ(x , z ) + δ(z , y). (triangle-inequality)

The pair ⟨L, δ⟩ is called a metric space.

A classic metric example is the Euclidean distance measuring the distance
between two real values as the absolute value of their difference.

Due to their axioms, metrics are among the strongest types of distances. How-
ever, depending on what we want to measure and on which domain, a distance
function may not satisfy all axioms of a metric, but only, e.g., (non-negativity)
and (if-identity), thereby being a pre-metric instead (cf. Fig. 1). As we will see
in Sec. 6, understanding the type of distance function we are manipulating is
essential for proving some implications between properties of programs (such as
between Partial Completeness and Partial Abstract Non-Interference in Sec. 6).
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In particular, a metric that does not satisfy symmetry is called a quasi-metric,
while a metric that does not satisfy the⇐ implication of (iff-identity) is called a
pseudo-metric. Semi-metrics satisfy all the axioms except for the triangle inequal-
ity. The function δ is called a pre-metric [17,8] if it only satisfies (non-negativity)
and the ⇒ implication of the (iff-identity), i.e., the (if-identity) axiom. All the
other metric axioms are not required, making the definition of pre-metric one of
the weakest possible distance function. By composing the words pseudo-, quasi-
and semi- we obtain different distance flavors by simply keeping the axioms that
are satisfied by all the combined words. For instance, a quasisemi-metric is a pre-
metric that additionally satisfies the (iff-identity). Fig. 1 summarizes the above
distance notions and their properties. We will occasionally use the subscript δL
in cases where the set L may not be immediately clear from the context. From
this point forward, whenever we say that a function δ is a distance, we assume
that it satisfies, at least, the axioms of a pre-metric.

Example 3 (Size Distance). Consider the powerset ℘(L) of a set L. We write
Count(S ) for the number of elements in the set S ∈ ℘(L). We define the distance
δsiz : ℘(L)× ℘(L)→ R∞ between two sets S1,S2 ∈ ℘(L) as the absolute value of
the difference in their size, i.e., δsiz (S1,S2)

def
= |Count(S2)−Count(S1)|. Note that

δsiz is not a metric, but a pseudo-metric since it does not satisfy the (iff-identity)
axiom: two sets may have the same size yet being different.

In program analysis, δsiz could be used to count, for instance, the number
of spurious elements added by an abstract sound computation with respect to
the abstraction of a concrete computation. For instance, if [0, 0] is the (interval
abstraction of the) strongest numerical invariant of a program variable x at
certain program point, while [0, 10] is the abstract invariant generated by an
abstract interpretation over Int, then δIntsiz ([0, 0], [0, 10]) = 10 indicates that the
abstract interpretation added 10 spurious values with respect to the (interval
abstraction of the) concrete execution. A similar example can be considered
when counting the false positives generated by a static analysis while checking
an abstract specification (e.g, whether x ∈ [0, 0]). ◁

Example 4 (Volume Distance). Let us consider the ordered domain of convex
octagons (Oct,≤Oct) [39]. We define the distance

δVol(o1, o2)
def
= Av(Vol(o1)−Vol(o2))

calculating the absolute value of the difference between the volume of two convex
octagons o1, o2 ∈ Oct. The volume function Vol : Oct → R∞

≥0 could be a mono-
tone (namely, if γ(o1) ⊆ γ(o2) then Vol(o1) ≤ Vol(o2)) overapproximation of
the exact volume computation. δVol satisfies all the axioms of a metric except for
(iff-identity) since two octagons may have they same volume yet not representing
the same octagon. Thus, δVol qualifies as a pseudo-metric. In program analysis,
δVol could be used to quantify the difference between the (numerical) invariants
of program variables generated by the abstraction of a concrete computation
with respect to an abstract computation. ◁
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For additional examples of pre-metrics and their applications in domains used
within the context of program analysis, we refer to [8].

We formally define quantitative approximations via pre-metrics as follows:

Definition 4 (Quantitative Approximation). Given a pre-metric space ⟨C, δ⟩
and a fixed constant ε ∈ R∞

≥0, an element x ∈ C is quantitatively approximated
by any element in the set {y ∈ C | δ(x , y) ≤ ε}.

Example 5. Continuing Ex. 2, we may approximate sets of integer numbers by
the size distance δsiz defined in Ex. 3. For instance, {0, 1, 4} can be quantitatively
approximated by any set of integers whose maximum distance from it is at most
ε = 1. Examples of such approximations include sets {0, 1} and {5, 6, 8, 10}. ◁

Here, the admitted noise concerns elements that are topologically close to
the original one but that may share no semantic property.

3 From Pre-Metrics to Upper Closure Operators

Semantic and quantitative approaches offer distinct perspectives on the problem
of approximation, relying on different formal frameworks to capture its nuances.
This naturally raises the question: are these two perspectives entirely orthogonal,
or is there a deeper relation between them? Understanding this connection is
the main goal of this section. Specifically, in the following, we establish a formal
relation between quantitative and semantic approximations—formalized by pre-
metrics and ucos, respectively—by means of Galois connections.

Let us start by assuming to work with a complete lattice ⟨C,≤C,∨C,∧C,⊤C,⊥C⟩.
Pre-metrics provide a quantitative measure of the difference between elements
in C. Such distances cannot be derived from the order structure alone, they must
be explicitly defined. As a result, the only viable approach to relate pre-metrics
and ucos is to derive the latter as abstractions of the former. The abstraction
process moves from pre-metrics to ucos by passing through equivalence relations:

Pre-Metrics // Equivalence Relations // Uco

More in detail, we first identify a subset of pre-metrics (called 0-pseudo-metrics)
on which we can obtain equivalence relations as an abstraction. The underlying
intuition is that we can represent a semantic approximation ρ ∈ Uco(C) by means
of a pre-metric δ that assigns distance 0 to elements x , y ∈ C with the same ab-
straction ρ(x ) = ρ(y), and assigns distance∞ otherwise. Elements assigned with
a distance of zero are the equivalence classes of the equivalence relation induced
by the 0-pseudo-metrics. On the other hand, ucos satisfy structural properties—
monotonicity, extensivity, idempotence—that are not automatically satisfied by
pre-metrics, 0-pseudo-metrics, or equivalence relations. These properties have to
be enforced through suitable constraints imposed by the abstractions. We de-
rive ucos in two further steps: forcing extensivity first, and monotonicity and
idempotence afterward, leveraging [15].
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3.1 The Domain M(C) of Pre-Metrics

The first step in formalizing the abstraction process from pre-metrics to ucos
is to define the underlying domain on which the construction operates. In the
following, we introduce the domain of pre-metrics. In the next subsections, we
progressively derive the domain of ucos as an abstraction.

Let M(C) be the set of all pre-metrics δ : C × C −→ R∞ defined on C, i.e,
M(C) def

= {δ | δ is a pre-metric on C}. We equip M(C) with a partial order ⊑m that
compares pre-metrics based on the cardinality of sets of pairs of elements with
a distance of zero. Formally, for δ1, δ2 ∈ M(C), we define:

δ1 ⊑m δ2
def⇔ ∀x , y ∈ C . δ2(x , y) = 0 ∨ (δ1(x , y) ̸= 0 ∧ δ1(x , y) ≤ δ2(x , y))

Intuitively, moving upward in the ordering corresponds to enlarging the sets of
pairs of elements that are assigned a distance of zero: pairs of elements that
are distinguished (assigned a non-zero distance) by a more concrete pre-metric
δ1 may become indistinguishable (assigned a zero distance) by a more abstract
pre-metric δ2. The distance between elements that remain distinguishable in δ2
may stretch, possibly to∞, reflecting the underlying intuition mentioned above.

Example 6. Suppose C = ℘({1, 2, 3, 4})3. Let δ and δ′ be pre-metrics on C such
that δ(1, 3) = δ(13, 12) = δ(2, 12) = δ(34, 234) = 0, δ(12, 14) = 2, δ(12, 34) = 2
while all the other elements are at distance∞, and δ′ = δ except for δ′(1, 23) = 0
(δ(1, 23) =∞) and δ′(12, 34) = 3 > 2 = δ(12, 34), graphically:

δ : 1 3 13 12 34

2 14

2340 0 2

0 2

0

δ′ : 1

23

3 13 12 34

2 14

2340

0

0 3

0 2

0

(The distances not depicted above are ∞. The differences are colored in red.)
We clearly have δ ⊑m δ

′. ◁

Let N ⊆ N and x , y ∈ C. We define the join and meet operators,
⊔

m and
d

m,
over sets of pre-metrics {δi(x , y) ∈ M(C) | i ∈ N } as follows:

⊔
m{δi}i∈N

def
= λ(x , y).

{
max {δi(x , y) | i ∈ N } ∀i ∈ N : δi(x , y) ̸= 0

0 otherwise
d

m{δi}i∈N
def
= λ(x , y).

{
m m = min {δi(x , y) | i ∈ N } ≠ ⊥
undefined otherwise

3 For the sake of readability, in the following, we represent sets of numbers by the
sequences of their elements without separators, e.g., {1, 2} is represented by 12.



Relating Distances and Abstractions 9

where the max and min operators:

max {δi(x , y) | i ∈ N } def
=

{
d ∃m ∈ N : ∀i ∈ N : ∞ ≠ d=δm(x , y) ≥ δi(x , y)

∞ otherwise

min {δi(x , y) | i ∈ N } def
=


0 ∀i ∈ N : δi(x , y) = 0

d ∃m ∈ N : ∀i ∈ N : 0 < d=δm(x , y) ≤ δi(x , y))

⊥ otherwise

find the distances within the given set of pre-metrics that are largest (but dif-
ferent from ∞) and smallest (possibly equal to ∞), respectively. It is clear that
the bottom element of M(C) does not exist in general. It is δ⊥ such that ∀x , y ∈
C : δ⊥(x , y)

def
= 1, if pre-metrics are restricted to assign discrete distances over nat-

ural numbers. The top element of M(C) is δ⊤ such that ∀x , y ∈ C : δ⊤(x , y)
def
= 0.

Proposition 1. ⟨M(C),⊑m,⊔m,⊓m, δ⊤⟩ is a join-complete semi-lattice.

3.2 The Domain M0(C) of 0-Pseudo-Metrics

M(C) �
� ρ0 // M0(C)

We observe that not all pre-metrics in M(C) are meaningful representations of se-
mantic approximations. For instance, the pre-metric in Ex. 6 is not a meaningful
semantic approximation because it is neither symmetric nor transitive between
elements at distance zero, e.g., δ identifies a semantic equivalence between 1 and
3 (δ(1, 3) = 0) but not between 3 and 1 (δ(3, 1) =∞).

The domain M0(C). We define a restriction of pre-metrics—called 0-pseudo-
metrics—satisfying symmetry and transitivity between elements that are as-
signed a distance of zero.

Definition 5 (0-Pseudo-Metrics). A 0-pseudo-metric δ : C × C → R∞ is a
pre-metric that additionally satisfies the following conditions, for all x , y , z ∈ C:

1. δ(x , y) = 0 ⇒ δ(y , x ) = 0; (0-distance symmetry)
2. (δ(x , y) = 0 ∧ δ(y , z ) = 0) ⇒ δ(x , z ) = 0 (0-distance transitivity)

Let M0(C) be the set of all 0-pseudo-metrics defined on C. It is clear that, by
definition, M0(C) ⊂ M(C), hence ⟨M0(C),⊑m⟩, i.e., the domain of 0-pseudo-metrics,
is still a poset preserving the same characteristics as M(C).

Proposition 2. ⟨M0(C),⊑m,⊔m,⊓m, δ⊤⟩ is a join-complete semi-lattice.
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Abstracting pre-metrics into 0-pseudo-metrics. We show here that 0-pseudo met-
rics can be obtained from pre-metrics by forcing both symmetry and transitivity
between elements assigned with a distance of zero.

Let S : M(C) → M(C) be the operator forcing symmetry only between the
elements with distance zero:

S(δ)
def
= λ(x , y).

{
0 δ(y , x ) = 0

δ(x , y) otherwise

Clearly, if a pre-metric δ is already symmetric, then S(δ) = δ.
Similarly, we define the operator T : M(C) → M(C) forcing transitivity, again

only between elements with distance zero:

T(δ)
def
= lfp⊑m

δ t

t(δ)
def
= λ(x , y).

{
0 ∃z ∈ C : δ(x , z ) = 0 ∧ δ(z , y) = 0

δ(x , y) otherwise

Note that, if a pre-metric δ satisfies the triangle inequality, then T(δ) = δ.
Let ρ0

def
= T ◦ S. By construction, given a pre-metric δ ∈ M(C), we have that

ρ0(δ) ∈ M0(C) is a 0-pseudo-metric. More generally, ρ0 is a uco on M(C) and M0(C)
is the set of its fixpoints ρ0(M(C)).

Theorem 1. ρ0 ∈ Uco(M(C)) and M0(C) = ρ0(M(C)).

Example 7. Suppose C = ℘({1, 2, 3, 4}) and consider δ of Ex. 6. Let δs
def
= S(δ),

such that δs = δ except for δs(3, 1) = δs(12, 13) = δs(12, 2) = δs(234, 34) = 0.

δs : 1 3 13 12 34

2 14

2340 0 2

0 2

0

Note that δs is not transitive, e.g., δs(2, 12) = 0 = δs(12, 13), but δs(2, 13) =
δ(2, 13) =∞. Let us consider now δt = T(δs) (which preserves symmetry).

δt : 1 3 13 12 34

2 14

2340 0 2

0 2

0

0

After one iteration of t we reach the fix-point and δt(2, 13) = δt(13, 2) = 0.
Note that the triangle inequality does not hold among elements with a distance
greater than zero, e.g., δt(2, 14) =∞ while δt(2, 12) = 0 and δt(12, 14) = 2. ◁

3.3 From M0(C) to Equivalence Relations: The Domain Mr(C)

Rel(C)

γr

��
M0(C)

� � ρr //

αr

55

Mr(C)
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At this point we can observe that 0-pseudo-metrics naturally induce an equiva-
lence relation between elements with a distance of zero. In this section, we thus
abstract 0-pseudo-metrics into the equivalence relations induced by them.

Let Rel(C) be the set of equivalence relations on C. In the following, given
an element x ∈ C and an equivalence relation R ∈ Rel(C), [x ]R denotes the
equivalence class of x induced by R, i.e., [x ]R

def
= {y ∈ C | y R x}. We define a

partial order ≼ on Rel(C) such that, for any R, S ∈ Rel(C), R ≼ S if and only if
∀x ∈ C : [x ]R ⊆ [x ]S. We have the following Galois insertion

⟨M0(C),⊑m⟩ −−−→−→←−−−−
αr

γr ⟨Rel(C),≼⟩

where the abstraction function αr : M0(C)→ Rel(C) is

αr(δ)
def
= {(x , y) ∈ C× C | δ(x , y) = 0}

and the concretization function γr : Rel(C)→ M0(C) is

γr(R)
def
= λ(x , y).

{
0 x R y

∞ otherwise

Thus, the domain ⟨Rel(C),≼⟩ is an abstraction of ⟨M0(C),⊑m⟩. Let ρr
def
= γr ◦αr,

we have that ρr is a uco on M0(C).

Theorem 2. ρr ∈ Uco(M0(C)).

Note that ρr is not an isomorphism since a 0-pseudo-metric δ may also assign
non-zero distances between elements. However, through the abstraction, these
distances are stretched to ∞ in ρr(δ). More generally, ρr abstracts 0-pseudo-
metrics into pseudo-metrics, ignoring all non-zero distances between elements.

Let Mr(C)
def
= ρr(M0(C)) = ρr ◦ρ0(M(C)) and let δ∞ ∈ Mr(C) be defined as:

δ∞
def
= λ(x , y).

{
0 x = y

∞ otherwise

Proposition 3. ⟨Mr(C),⊑m,⊔m,⊓m, δ⊤, δ∞⟩ is a complete lattice.

Note that δ⊤ = γr(⊤), where ⊤ ∈ Rel(C) is such that ∀x , y ∈ C : x⊤y , and δ∞ =

γr(id), where id ∈ Rel(C) is such that x id y
def⇔ x = y . Thus, Mr(C) ⊂ M0(C) ⊂

M(C) is the complete sub-lattice of M(C) uniquely identifying equivalence relations.

Example 8. Let us consider δt of Ex. 7. Its abstraction δr
def
= ρr(δt) is such that

δr = δt except for δr (12, 14) = δr (12, 34) =∞.

δr : 1 3 13 12

2

34 2340 0

0

0

0

≡ 1 3 2 12 13 34 234

In the depiction above on the right, we show an equivalent representation of
δr where different elements inside the same box are assigned with a distance of
zero, while all other distances between elements in different boxes or between
the other, not depicted, elements of C are ∞. ◁
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3.4 From Equivalence Relations to Upper Closure Operators

Rel(C)
αe // Ext(C) �

� ρim // Uco(C)

γf

ii

The next step in the abstraction process is to move from equivalence relations
towards (extensive) functions and afterward to upper closure operators.

Let Fun(C) be the set of total functions on C ordered point-wise, i.e., f ≤̇C g
def⇔

∀x ∈ C . f (x ) ≤C g(x ).

Proposition 4. ⟨Fun(C), ≤̇C, ∨̇C, ∧̇C, λx .⊤C, λx .⊥C⟩ is a complete lattice.

Given an equivalence relation R ∈ Rel(C) we can construct a total function
f : C→ C that maps each element in C to a representative element of its equiva-
lence class under R. Various choices are possible for this representative element,
but since our ultimate goal is to characterize ucos, which in particular are ex-
tensive functions, we define f such that each equivalence class is mapped to its
least upper bound, thus ensuring that f is extensive.

Formally, let Ext(C) def
= {f : C→ C | ∀x ∈ C . x ≤C f (x )} ⊂ Fun(C) be the set

of all extensive functions on C. Clearly Ext(C) forms a complete sub-lattice of
Fun(C). Note that λx .⊥C is the smallest function with respect to the point-wise
order in Fun(C) but, not being extensive, it cannot be the smallest function in
Ext(C), where the bottom element is the identity function ι.

Proposition 5. ⟨Ext(C), ≤̇C, ∨̇C, ∧̇C, λx .⊤C, ι⟩ is a complete lattice.

We define the following function αe : Rel(C)→ Ext(C) as

αe(R)
def
= λx ∈ C.

∨
([x ]R)

Note that αe is not surjective since an extensive function could lead the elements
to be greater than the least upper bound.

Example 9. Suppose C = ℘({1, 2, 3, 4}) and consider δr of Ex. 8. Let R the cor-
responding equivalence relation depicted in Ex. 8. Its abstraction f

def
= αe(R) is

the identity function except for f (1) = f (3) = 13, f (2) = f (12) = f (13) = 123 =
f (123), f (34) = f (234) = 234. Hence, f collapses the image of 123 with the one
of 2, 12, and 13, since, for instance, f (12) =

∨
([12]R) =

∨
{2, 12, 13} = 123. ◁

From the domain of extensive function Ext(C), we can use the construction
in [15] to further enforce monotonicity and idempotence thus characterizing the
complete sub-lattice of ucos on C, i.e., ⟨Uco(C), ≤̇C, ∨̇C, ∧̇C, λx .⊤C, ι⟩, where the
point-wise order ≤̇C reflects the relative precision between ucos.

Let Mon(C) def
= {f ∈ Ext(C) | ∀x , y ∈ C . x ≤C y ⇒ f (x ) ≤C f (y)} be the set of

monotone extensive functions. To enforce monotonicity, we leverage the operator
M : Ext(C)→ Mon(C) [15] defined as

M(f )
def
= λx .

∨
{f (y) | y ≤C x}
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which, given an extensive function f ∈ Ext(C), yields the least monotone exten-
sive function greater than f . This means that M ∈ Uco(Ext(C)), identifying the
sub-lattice of monotone and extensive functions [15].

To enforce idempotence, we leverage I : Mon(C)→ Uco(C) [15] defined as

I(f )
def
= lfp≤̇C

f (λg .g ◦g)

which, given a monotone and extensive function f ∈ Mon(C), yields the smallest
idempotent function greater than f . Thus, I ∈ Uco(Mon(C)) and, by defining
ρim

def
= I◦M ∈ Uco(Ext(C)), we have Uco(C) = ρim(Ext(C)).
We now define the following Galois insertion

⟨Rel(C),≼⟩ −−−→−→←−−−−
αf

γf ⟨Uco(C), ≤̇C⟩

where the abstraction αf : Rel(C)→ Uco(C) is

αf(R)
def
= ρIm ◦αe(R)

and the concretization γf : Uco(C)→ Rel(C) is

γf(ρ)
def
= {(x , y) ∈ C× C | ρ(x ) = ρ(y)}

We have that ρf
def
= γf ◦αf defines a uco on Rel(C).

Theorem 3. ρf ∈ Uco(Rel(C)).

Example 10. Consider C = ℘({1, 2, 3, 4}) and f of Ex. 9. Then fm
def
= M(f ) is such

that fm = f except for fm(14) = 134, fm(23) = 123, and fm(24) = fm(124) =
fm(134) = fm(1234) = 1234 = fm(34) = fm(234) (since fm(3) adds 1 and 3,
while fm(34) adds 2 and 4). Finally, ρ = I(fm) is such that ρ = fm except for
ρ(1) = ρ(3) = 123 (since fm(1) = fm(3) = 13 and fm(13) = 123 = fm(123))
and ρ(14) = 1234 (since fm(14) = 134 and fm(134) = 1234 = fm(1234)). The
corresponding equivalence relation Rρ

def
= γf(ρ) is

Rρ : 1 2 3 12 13 23 123 14 24 34 124 134 234 1234

representing a uco over C = ℘({1, 2, 3, 4}) with fix points {∅, 4, 123, 1234}. ◁

3.5 Upper Closure Operators as Pre-Metrics: The Domain Mu(C)

Rel(C)
αf //

γr

��

Uco(C)

γu

��
M0(C)

� � ρu //

αr

FF

Mu(C)
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The last step consists of identifying the pre-metrics that can be uniquely
associated with a uco. We define the following Galois insertion

⟨M0(C),⊑m⟩ −−−→−→←−−−−
αu

γu ⟨Uco(C), ≤̇C⟩

where the abstraction αu : M0(C)→ Uco(C) is

αu
def
= αf ◦αr

and the concretization γu : Uco(C)→ M0(C) is

γu(ρ)
def
= γr ◦γf = λ(x , y).

{
0 ρ(x ) = ρ(y)

∞ otherwise

We have that ρu
def
= γu ◦ αu defines a uco on M0(C) forcing all the properties

described in the previous sections on the collections of elements with 0-distance
and forgetting (setting to ∞) all the other distances.

Theorem 4. ρu ∈ Uco(M0(C)).

Let Mu(C)
def
= ρu(M0(C)) = ρu ◦ρ0(M(C)).

Proposition 6. ⟨Mu(C),⊑m,⊔m,⊓m, δ⊤, δ∞⟩ is a complete lattice.

We finally have the following increasing chain between pre-metric domains:

Mu(C) ⊂ Mr(C) ⊂ M0(C) ⊂ M(C)

In particular, Mu(C) is the sub-lattice of pre-metrics uniquely identifying ucos on
the complete lattice C.

Rel(C)

γr

��

αe //

αf

))
Ext(C) �

� ρim // Uco(C)

γu

��

γf

ii

M(C) �
� ρ0 // M0(C)

� � ρr //

αr

55

Mr(C)
� � ρu // Mu(C)

Fig. 2: From pre-metrics to ucos, and back.

Fig. 2 illustrates the full abstraction process from pre-metrics to ucos devel-
oped in this section. It shows that ucos can, in general, be viewed as specific
instances of pre-metrics (via γu). However, ucos are far from trivial: deriving
one from a pre-metric requires that the distance satisfy specific and often strin-
gent conditions. As a result, ucos obtained through abstraction (αfαrρu) retain
a distinct identity, reflecting structural properties of the underlying domain C.
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4 Combining Distances (and Abstractions)

In this section, building on our view of ucos as abstractions of pre-metrics, we
study a way to compose pre-metrics—akin to how compositions of ucos can be
defined. Specifically, we define a combination of pre-metrics that enables a layered
abstraction: a first pre-metric determines how to aggregate elements (at distance
zero)—to select the domain of comparison—and a second pre-metric measures
distances within this selected domain between the identified aggregations.

Let us consider δ1, δ2 ∈ M(C), and let f [δ1] be a selector map f [δ1] : C → C
associating with each element z ∈ C a unique element fz ∈ C at distance of zero
from z with respect to δ1, i.e., such that if fz

def
= f [δ1](z ) then δ1(fz , z ) = 0. Then,

we can combine δ1 and δ2, leveraging f [δ1], as follows:

δ1 ▷f δ2
def
= λ(x , y).

{
0 δ1(x , y) = 0

δ2(f [δ1](x ), f [δ1](y)) otherwise

Proposition 7. Let δ1, δ2 ∈ M(C). Then also δ1 ▷f δ2 ∈ M(C).

Example 11. Let Σ be a chosen alphabet (finite set of characters) and let Σ∗

be the Kleene closure of Σ, i.e., the set of all strings of finite length over Σ.
We consider the poset ⟨℘(Σ∗),⊆⟩. Let us define δΣ : ℘(Σ∗) × ℘(Σ∗) → N∞ to
compute the absolute difference between the number of string lengths between
two sets of strings W1,W2 ∈ ℘(Σ∗). Formally:

δΣ(W1,W2)
def
= δsiz ({length(w1) | w1 ∈W1}, {length(w2) | w2 ∈W2})

where δsiz is the size distance of Ex. 3 and length(w) is the number of characters
composing the (finite) string w .

The composition δsiz ▷f δΣ , with f [δsiz ] = ι, computes the distance between the
cardinality of string lengths only when the string sets have different cardinality.
For instance, given W1 = {a} and W2 = {bb}, then δsiz (W1,W2) = 0 and
therefore δsiz ▷f δΣ(W1,W2) = 0. Instead, given W1 and W3 = {a, bb, cc}, we
have δsiz ▷f δΣ(W1,W2) = 2 and thus δsiz ▷f δΣ(W1,W3) = δΣ(W1,W3) = 1.

Vice versa, δΣ ▷f δsiz , with f [δΣ ] = ι, computes the distance between the
cardinality of the string sets only when the sets of their strings lengths have
different lengths. For instance, δΣ(W1,W2) = 0 and thus δΣ ▷f δsiz (W1,W2) = 0,
while δΣ(W1,W3) = 1 and therefore δΣ ▷f δsiz (W1,W3) = δsiz (W1,W3) = 2. ◁

At this point, we can use the operation ▷f for combining a distance δρ ∈ Mu(C)
characterizing a semantic abstraction ρ ∈ Uco(C) (cf. Sec. 3.5), and another
distance δC ∈ M(C) that we want to use for measuring the distances between
abstract elements, i.e. elements in ρ(C). As for selector function f [δρ], we can
exploit precisely the structure of the elements assigned with a distance of zero in
δρ. Namely, we can take the least upper bound of the elements at distance zero,
which by construction is at distance zero (cf. Sec. 3.4). Formally, let us define
δρC

def
= δρ ▷f δC with f [δρ]

def
= λx .

∨
{w | δρ(x ,w) = 0}. Note that the definition of

f [δρ] satisfies the condition to be a selector function since, by construction of
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δρ ∈ Mu(C), we have that: ∀x ∈ C . δρ(f [δρ](x ), x ) = 0. The combination distance
δρ ▷f δC is the conjunction of a semantic approximation ρ (cf. Def. 2) and a
quantitative approximation δC (cf. Def. 4):

Proposition 8. Let δρ ∈ Mu(C) characterize ρ ∈ Uco(C) and let δC ∈ M(C). Let
f [δρ] = λx .

∨
{w | δρ(x ,w) = 0} on C, then

∀x , y ∈ C . (δρ ▷f δC)(x , y) = δC(ρ(x ), ρ(y))

We formally define this general notion of approximation below.

Definition 6 (General Approximation). Let ⟨C,≤C⟩ be a poset and ⟨C, δC⟩
be a pre-metric space, and let ρ ∈ Uco(C). We define the general approximation
as follows for any x , y ∈ C:

δρC (x , y)
def
= δC(ρ(x ), ρ(y))

An element x ∈ C is semantically approximated with ρ and quantitatively approx-
imated by δC, up to ε ∈ R∞

≥0, by any element in the set {y ∈ C | δρC (x , y) ≤ ε}.

That is, δρC (x , y) calculates the distance between the semantic approximations
of x and y with ρ. Clearly, when considering the identity function ι ∈ Uco(C) as
abstraction, it holds that δι ▷f δC = διC(x , y) = δC(x , y) for any x , y ∈ C.

Example 12. Continuing Ex. 2 and Ex. 5, the set {0, 1, 4} can be semantically
and quantitatively approximated by δInt ▷f δsiz = δIntsiz and ε = 1 in any set in

{S ∈℘(Z) | δIntsiz ({0, 1, 4},S )≤1}={S ∈℘(Z) | Int(S )=[−1, 4] ∨ Int(S )=[0, 5]} ◁

In the following sections, we build on this general approximation frame-
work a new confidentiality property—based on the notion of Abstract Non-
Interference—that quantifies semantic variations in the output domain. This
leads to a novel property we call Partial Abstract Non-Interference. We prove
that it has a strong relation with Partial Completeness [5,7,8], a property mod-
eling imprecision of an abstraction in the context of abstract interpretation, but
it provides a novel perspective on precision, as it happens for the (not partial)
corresponding notions.

5 (Partial) Completeness and Abstract Non-Interference

We briefly recall the notions of Completeness and Partial Completeness in ab-
stract interpretation, as well as Abstract Non-Interference (ANI).

Completeness. Given a monotone function f : C → D over posets ⟨C,≤C⟩ and
⟨D,≤D⟩, the abstractions η ∈ Uco(C) and ρ ∈ Uco(D) can be used to approximate
computations, thus defining an abstract version f ♮ : η(C) → ρ(D) of f . An ab-
stract function f ♮ is sound when ρ ◦ f ≤D f ♮ ◦ η [14]. A sound by construction
approximation is f α

def
= ρ ◦ f ◦ η, called the best correct approximation (bca) [14]
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of f . Any f ♮ soundly approximating f is, in fact, equal or less precise than the
bca, formally: ρ◦ f ≤D f

α ≤D f
♮ ◦η [14].

A sound abstract computation f ♮ : η(C) → ρ(D) performs a precise approx-
imation of a (concrete) monotone function f : C → D whenever ρ ◦ f = f ♮ ◦ η.
It has been proved that for a precise abstract approximation to exist, the bca
f α must also be precise [13,26]. In particular, if f ♮ is a precise abstract approxi-
mation of f then f ♮ = f α . Completeness [13,26] in abstract interpretation is a
desirable property that ensures the existence of a precise abstract approximation
of a (concrete) monotone function f . Formally4:

Definition 7 (Completeness [13,26]). Let ⟨C,≤C⟩ and ⟨D,≤D⟩ be posets, and
let η ∈ Uco(C) and ρ ∈ Uco(D) be the input and output abstractions, respectively.
A monotone function f : C → D satisfies Completeness w.r.t. ⟨η, ρ⟩ when the
following condition holds: ∀x ∈ C . ρ◦ f (x ) = ρ◦ f ◦η(x ).

In other words, proving the Completeness of f w.r.t. the input and output
abstractions ⟨η, ρ⟩ means proving the bca ρ◦ f ◦η is precise.

Partial Completeness. In practice, Completeness is rarely satisfied. For this
reason, Campion et al. [5,7,8] introduced a weaker notion of completeness, called
Partial Completeness, by the use of pre-metrics compatible with the ordering of
the underlying poset.

Definition 8 (Order-Compatible Distance [8]). Let ⟨L,≤L⟩ be a poset. A
distance δ : L × L → R∞ is said to be compatible with the ordering ≤L or,
in short, ≤L-compatible, if and only if it also satisfies the following property
∀x , y , z ∈ L:

x ≤L y ≤L z ⇒ δ(x , y) ≤ δ(x , z ) ∧ δ(y , z ) ≤ δ(x , z ). (chains-order)

A poset ⟨L,≤L⟩ equipped with a ≤L-compatible distance δ is called a distance
compatible space and is denoted by the triple ⟨L,≤L, δ⟩.

The purpose of the (chains-order) axiom is to give a meaning to distances
between comparable elements. Notably, let f ♮1 and f ♮2 be sound abstract approx-
imations of a concrete monotone function f : C → D, i.e., ρ ◦ f ≤D f ♮1 ◦ η and
ρ◦ f ≤D f

♮
2 ◦η. If f ♮1 is more precise than f ♮2 , i.e., f ♮1 ≤D f

♮
2 , we expect a decrease in

the imprecision (distance) with respect to the concrete computation when using
f ♮1 rather than f ♮2 , i.e., ∀x ∈ D : δ(ρ◦ f (x ), f ♮1 ◦η(x )) ≤ δ(ρ◦ f (x ), f ♮2 ◦η(x )).

Example 13. The poset ⟨℘(L),⊆⟩ and the size distance δsiz from Ex. 3 form a
pseudo-metric compatible space. ◁

For additional examples of order-compatible pre-metrics and their applica-
tions in domains used within the context of program analysis, we refer to [8].

4 This definition of Completeness is also called Backward-Completeness [26].
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Def. 8 is general enough to be instantiated with other definitions of distances
used in the literature of abstract interpretation (see, e.g., [5,30,31,19,41]).

We can now recall the definition of ε-Partial Completeness, adapted here in
the context of ucos and by leveraging Def. 6 for rewriting the condition.

Definition 9 (ε-Partial Completeness [5,8]). Let ⟨C,≤C⟩ be a poset and
⟨D,≤D, δD⟩ be a pre-metric compatible space, let η ∈ Uco(C) and ρ ∈ Uco(D)
be the input and output abstractions, respectively. Let ε ∈ R∞

≥0. A monotone
function f : C → D satisfies ε-Partial Completeness w.r.t. ⟨η, δρD ⟩ if and only if
the following condition holds: ∀x ∈ C . δρD (f (x ), f ◦η(x )) ≤ ε.

The equality requirement of Def. 7 is relaxed by admitting a bounded impre-
cision, i.e. a bounded distance, between ρ ◦ f (x ) and the bca ρ ◦ f ◦ η(x ) for all
x ∈ C , which must not exceed ε. The imprecision to be measured and bounded
is encoded in the pre-metric ≤D-compatible δD defined on the output domain D.

Example 14. We consider the pre-metric compatible space ⟨℘(Z),⊆, δsiz ⟩ where
δsiz is the size distance defined in Ex. 3, the complete lattice ⟨℘(Z),⊆,∪,∩,Z,∅⟩,
and the standard denotational collecting semantics over it JQK : ℘(Z)→ ℘(Z) of
the following program Q ∈ Prog:

while x > 1 do x := x − 2

Let us set ρ = η = Int. Then JQK does not satisfy Completeness for ⟨Int, Int⟩
because for the input {2, 4} we get:

Int(JQK{2, 4}) = [0, 0] ⊂ [0, 1] = Int(JQK{2, 3, 4}) = Int(JQKInt({2, 4}))

However, if we allow an imprecision quantified by ε = 1, which for δsiz corre-
sponds to accepting one spurious element between the two results, we get:

δIntsiz (JQK{2, 4}, JQKInt({2, 4})) = δsiz ([0, 0], [0, 1]) ≤ 1

In particular, it is easy to note that δIntsiz (JQKS , JQKInt(S )) ≤ 1, for all input
sets S ∈ ℘(Z), which implies that JQK satisfies 1-Partial Completeness w.r.t.
⟨Int, δIntsiz ⟩. ◁

It is worth noting that, if a function f is proved to satisfy Completeness for
abstractions ⟨η, ρ⟩, then f is also 0-Partial Complete for ⟨η, δρD ⟩ with respect to
any pre-metric order-compatible δ (thanks to the (if-identity) axiom). However,
the converse does not hold if the (iff-identity) axiom is not satisfied by δ, e.g.,
when δ is a pseudo-metric.

Abstract Non-Interference. Non-Interference [27] is a confidentiality policy
that safeguards sensitive input information from affecting observable computa-
tion results. This concept has been relaxed to encompass variations in properties
that might influence computations [21,32,24,22,33]. Additionally, the distinction
between secret/relevant and public/observable data can be interpreted as an ab-
straction of data. In particular, Non-Interference has been extended and refined
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through abstract interpretation, yielding a confidentiality policy called Abstract
Non-Interference [24]. Following [35], we will focus on the flavor of Abstract Non-
Interference considering an input data property to protect, when assuming an
abstract observation of computations (this notion is called narrow in [24]).

Definition 10 (Abstract Non-Interference [24]). Let ⟨C,≤C⟩ and ⟨D,≤D⟩ be
posets, and let η ∈ Uco(C) and ρ ∈ Uco(D) be abstractions. A function f : C→ D
satisfies Abstract Non-Interference (ANI for short) w.r.t. ⟨η, ρ⟩ when:

∀x , y ∈ C . η(x ) = η(y) ⇒ ρ◦ f (x ) = ρ◦ f (y)

Example 15. Consider the complete lattice ⟨℘(Z),⊆,∪,∩,Z,∅⟩, the standard
collecting semantics JPK : ℘(Z)→ ℘(Z), and the following program P:

if (x mod 2=0 ∧ x ̸=0) then x :=(x/2)2 else x :=−x 2 + (1− |x |)

where mod is the modulo operation. Let Par ∈ Uco(℘(Z)) be the parity abstrac-
tion over input values, and Sign ∈ Uco(℘(Z)) the sign abstraction over output
values (cf. Ex. 1). In this program, for any even value, we return a positive
number; for 0, we return 1 (hence a positive value), while for odd numbers, we
return a negative value. Formally, for all N ,M ∈ ℘(Z), if Par(N ) = Par(M ) then
we have Sign(JPKN ) = Sign(JPKM ), thus JPK satisfies ANI w.r.t. ⟨Par,Sign⟩. It
should be clear that, if we consider as input abstractions any convex abstract
domain other than Par (mixing in the same abstract value even and odd values)
such as Sign or Int, then ANI w.r.t. Sign as output abstraction (e.g., ⟨Sign,Sign⟩
or ⟨Int,Sign⟩) does not hold anymore. ◁

Although Abstract Non-Interference and Completeness may initially appear
to be distinct notions, they have been proved to be equivalent in [35]. This equiv-
alence enables the reuse of verification mechanisms for ANI to verify Complete-
ness. Conversely, domain transformers that induce Completeness (e.g., [26,3])
can also be repurposed to enforce ANI.

6 A General Approximated Confidentiality Property

Non-Interference [27] has been widely adopted to model various security proper-
ties, particularly confidentiality, which concerns the control of information flow
within a computer system. Despite its widespread use in academic research, Non-
Interference is rarely achievable in real-world systems for two main reasons: first,
it is a very strong property that requires complete indistinguishability of data;
second, practical systems often need to reveal some information to function—for
example, a password checker necessarily leaks some information about the input
when indicating whether access is granted. As a result, several weakened vari-
ants of Non-Interference have been proposed. Broadly, these relaxations fall into
two categories, which correspond to the two types of approximation discussed in
Sec. 4: semantic approximation and quantitative approximation.
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Abstract Non-Interference (cf. Def. 10) adopts a semantic approach, replacing
indistinguishability between data with indistinguishability between properties of
data. This constitutes a semantic approximation, as it requires the abstraction of
the program semantics to be indistinguishable whenever the inputs are indistin-
guishable with respect to a given abstract property. In language-based security,
it means that if the observable output remains within the group of all acceptable
outputs (modeled as an abstraction), the system is deemed secure.

Approximate Non-Interference [18] follows a quantitative approach, where
indistinguishability between data is replaced by similarity. Originally introduced
in the context of probabilistic process algebras, this notion requires that the
observable behaviors of two agents differ by no more than a threshold ε, rather
than being strictly identical as in standard Non-Interference [27].

Our idea is to combine the two approximation strategies (cf. Sec. 4)—semantic
and quantitative—while keeping the two types of approximation explicitly dis-
tinct. This leads to a new notion called Partial Abstract Non-Interference, where
indistinguishability between data is replaced by similarity between properties of
data. In security, Partial ANI would offer a more refined modeling capability.
Instead of requiring outputs to be indistinguishable under a coarse abstraction,
it allow outputs to vary, as long as the variation remains within a specified
quantitative bound. This enables a more nuanced treatment of security policies,
especially when small, bounded differences in outputs are tolerable.

6.1 Partial Abstract Non-Interference

Partial Abstract Non-Interference is a novel relaxation of Non-Interference that
combines both semantic and quantitative approximations. Specifically, it ob-
serves properties of data (as in ANI) rather than raw data, while allowing for a
bounded distance between these observed properties.

Definition 11 (ε-Partial Abstract Non-Interference). Let ⟨C,⪯C⟩ be the
input domain and ⟨D,⪯D⟩ be the output one (posets), respectively. Let ⟨C, δC⟩ and
⟨D, δD⟩ be pre-metric spaces. Let η ∈ Uco(C), ρ ∈ Uco(D) be the abstractions of
the input and output domains, respectively, and ε ∈ R∞

≥0. A function f : C →
D satisfies ε-Partial Abstract Non-Interference (ε-Partial ANI for short) w.r.t.
⟨δηC , δ

ρ
D ⟩ when the following implication holds:

∀x , y ∈ C . δηC (x , y) = 0 ⇒ δρD (f (x ), f (y)) ≤ ε

Starting from inputs whose property distance is zero according to δηC , i.e.,
δηC (x , y) = 0, Partial ANI allows the function to produce different outputs, po-
tentially with different properties under δρD , as long as the variation remains
bounded, specifically not exceeding a given threshold ε, i.e. δρD (f (x ), f (y)) ≤ ε.
It is important to note that the condition δηC (x , y) = 0 does not imply η(x ) = η(y)
(as required for ANI, cf. Def. 10) since δC is a pre-metric and may therefore vio-
late the (iff-identity) axiom. As a result, on the left-hand side of the implication,
Partial ANI allows inputs to be mapped by η to different abstract properties,
while still being indistinguishable with respect to δC.
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Example 16. Consider the program R: if x > 0 then x := x−1 else x := x+1.
and the standard collecting denotational semantics JRK : ℘(Z) → ℘(Z). Let us
consider the counting distance δsiz , defined in Ex. 3 and the abstract domain of
intervals Int ∈ Uco(℘(Z)). In this program, if we start from an interval composed
by positive values only (e.g. [1, 8]), then JRK decreases all the values by one (i.e.,
[0, 7]). Something similar happens when all the elements in the interval are neg-
ative, e.g., [−5,−2] returning [−4,−1]. The only case in which the dimension of
an input interval changes is when the lower bound is non-positive (and thus in-
creased by one) and the upper bound is positive (and thus decreased by one), e.g.,
[−2, 5] becomes [−1, 4]. This means that starting from two sets S1,S2 ∈ ℘(Z)
whose interval abstraction has the same number of values (i.e., δIntsiz (S1,S2) ≤
0), e.g. δIntsiz ({−9,−2}, {1, 3, 5, 8}) = 0, we obtain as output two respective in-
tervals with the same number of elements, e.g. δIntsiz ({−8,−1}, {0, 2, 4, 7}) =
δsiz ([−8,−1], [0, 7]) = 0, or, in the worst case, with a difference of two, i.e.,
δIntsiz (JRKS1, JRKS2) ≤ 2. For instance, δIntsiz ({−5, 0, 2}, {1, 8}) = 0 in input, and
δIntsiz ({−4, 1}, {0, 7}) = 2 in output. Hence, we can say that the collecting seman-
tics of the program R satisfies 2-Partial ANI w.r.t. ⟨δIntsiz , δ

Int
siz ⟩.

Conversely, consider this time the program R∗ where ∗ is the Kleene closure
of regular commands [40] whose semantics is defined as follows: ∀S ∈ ℘(Z) .
JR∗KS def

=
⋃
{JRKnS | n ∈ N} and where JRKn is the composition of program R

n times. Then Partial ANI does not hold for any ε (except for the trivial case
ε = ∞). In particular, for any input whose interval abstraction has bounds of
opposite sign, e.g., [−2, 4], the result is precisely the same interval since the col-
lecting semantics keeps the greater collection; if the lower bound is not negative,
e.g., [2, 6], then it is pushed to 0 in the output, i.e., [0, 6]; while if the upper
bound is not positive, e.g., [−4,−2], then this is pushed to 1, i.e., [−4, 1]. This
means that for instance δsiz ([2, 6], [21, 25]) ≤ 0 but δIntsiz (JR

∗K[2, 6], JR∗K[21, 25]) =
δsiz ([0, 6], [0, 25]) = 19, and this difference may increase without limit. ◁

By fixing the bound on the difference between output properties to ε = 0,
Partial ANI reduces to the following slight generalization of ANI:

∀x , y ∈ C . δηC (x , y) = 0 ⇒ δρD (f (x ), f (y)) ≤ 0

This notion collapses to ANI (cf. Def. 10) when both δC and δD satisfy the
(iff-identity) axiom, namely when both are quasisemi-metrics.

On the other hand, if we move into the field of process algebra, if we con-
sider η = ⊤ (i.e., we do not have constraints on the input processes), δC is any
quasisemi-metric, and we consider as ρ the observation of the processes, then
Partial ANI (cf. Def. 11) collapses to Approximate Non-interference [18].

6.2 On the Relation with Partial Completeness

In the last decade, it has been proved that there is a strong relation between
the property of Completeness in abstract interpretation and Abstract Non-
Interference [35]. Specifically, we know that requiring Completeness of a function
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w.r.t. an input and output abstractions, is equivalent to requiring that function
inputs sharing the same property are mapped to outputs that also share the
same property (i.e., ANI).

In this section, we study the relation between Partial Completeness (cf.
Def. 9) and Partial ANI (cf. Def. 11). When generalizing ANI to Partial ANI
by combining semantic and quantitative approximations, the equivalence be-
tween Completeness and ANI (proved in [35]) becomes an implication between
ε-Partial ANI and ε-Partial Completeness. Vice versa, when we are considering
a quasisemi-metric space and a pseudo-metric space for the input and output
domains, respectively, there is an implication between ε-Partial Completeness
and 2ε-Partial ANI. These statements are proved in the following two theorems:

Theorem 5 (ε-Partial ANI ⇒ ε-Partial Completeness). Let ⟨C,⪯C⟩ be
a poset equipped with a pre-metric (not necessarily order-compatible) δC, and
⟨D,⪯D, δD⟩ be a pre-metric compatible space. Let η ∈ Uco(C), ρ ∈ Uco(D) be
abstractions and ε ∈ R∞

≥0. If a monotone function f : C → D satisfies ε-Partial
ANI w.r.t. ⟨δηC , δ

ρ
D ⟩ then f satisfies ε-Partial Completeness w.r.t. ⟨η, δρD ⟩, namely:

[∀x , y ∈ C . δηC (x , y) ≤ 0⇒ δρD (f (y), f (x )) ≤ ε]⇒ [∀x ∈ C . δρD (f (x ), f ◦η(x )) ≤ ε]

Example 17. Consider again the pre-metric compatible space ⟨℘(Z),⊆, δsiz ⟩ and
the abstraction Int ∈ Uco(℘(Z)). From Ex. 16, we know that JRK satisfies 2-
Partial ANI w.r.t. ⟨δIntsiz , δ

Int
siz ⟩, i.e., δIntsiz (X ,Y ) ≤ 0 ⇒ δIntsiz (JRKX , JRKY ) ≤

2 for any X ,Y ∈ ℘(Z). Thus, by Thm. 5, it satisfies 2-Partial Complete-
ness w.r.t. ⟨Int, δIntsiz ⟩, i.e., δIntsiz (JRKX , JRKInt(X )) ≤ 2 for any X ∈ ℘(Z). In
fact, the bound 2 for Partial Completeness is not tight as JRK also satisfies
1-Partial Completeness w.r.t. ⟨Int, δIntsiz ⟩. Indeed, given X = {−1, 1}, we have
δIntsiz (JRK{−1, 1}, JRKInt({−1, 1})) = δsiz ([0, 0], [0, 1])) ≤ 1, while for any Y ∈
℘(Z) \ {−1, 1} we have δIntsiz (JRKY , JRKInt(Y )) ≤ 0. ◁

Theorem 6 (ε-Partial Completeness ⇒ 2ε-Partial ANI). Let ⟨C,⪯C⟩ be
a poset equipped with a quasisemi-metric (not necessairly order-compatible) δC,
and ⟨D,⪯D, δD⟩ be a pseudo-metric compatible space. Let η ∈ Uco(C), ρ ∈ Uco(D)
be the input and output abstractions, respectively, and ε ∈ R∞

≥0. If a monotone
function f : C→ D satisfies ε-Partial Completeness w.r.t. ⟨η, δρD ⟩ then f satisfies
2ε-Partial ANI w.r.t. ⟨δηC , δ

ρ
D ⟩, namely:

[∀x ∈ C . δρD (f (x ), f ◦η(x )) ≤ ε]⇒ [∀x , y ∈ C . δηC (x , y) ≤ 0⇒ δρD (f (y), f (x )) ≤ 2ε]

Thm. 5 shows that having a proof of ε-Partial ANI of f w.r.t. ⟨δηC , δ
ρ
D ⟩, implies

that f is partial complete w.r.t. ⟨η, δρD ⟩ with the same bound of imprecision ε. In
other words, if f maps distinct inputs but having a zero distance according to
δC, to corresponding outputs that differ by an ε amount according to δD (i.e., f
satisfies ε-Partial ANI), then there exists a sound abstract approximation of f
over ⟨η, ρ⟩, namely ρ ◦ f ◦η, capable of producing a results with an imprecision,
measured by δD, not greater than the bound ε.

On the other hand, the use of δηC and δρD in the definitions of Partial ANI
(cf. Def. 11) and Partial Completeness (cf. Def 9) amplifies the bound on the
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output error by a constant factor in Thm. 6. This is because Partial ANI bounds
the distance between ρ ◦ f (x ) and ρ ◦ f (y), for all x , y ∈ C that have distance
smaller or equal than zero through the abstraction η, but Partial Completeness
only guarantees a bound on the distance between ρ ◦ f (x ) and ρ ◦ f (y), for all
x ∈ C with y = η(x ). We thus bound the output error for Partial ANI by adding
up the distance between ρ ◦ f (x ) and ρ ◦ f ◦ η(x ) = ρ ◦ f ◦ η(y), and between
ρ◦ f ◦η(x ) = ρ◦ f ◦η(y) and ρ◦ f (y).

Note also that Thm. 6 imposes stronger requirements than Thm. 5 on δC and
δD. Its applicability is more limited and strongly depends on which imprecision
we are interested to measure, i.e. the type of distances used over the input and
output domains, as shown by the following example.

Example 18. Consider again the pre-metric compatible space ⟨℘(Z),⊆, δsiz ⟩ and
the abstraction Int ∈ Uco(℘(Z)). The collecting semantics JRK from Ex. 16 sat-
isfies 1-Partial Completeness w.r.t. ⟨Int, δIntsiz ⟩ (cf. Ex. 17). However, we cannot
apply Thm. 6 to derive that JRK also satisfies 2-Partial ANI w.r.t. ⟨δIntsiz , δ

Int
siz ⟩ be-

cause δsiz is not a quasisemi-metric (it does not satisfy the (iff-identity) axiom).
◁

The relation between 0-Partial ANI and Completeness (cf. Def. 7) is a straight-
forward corollary of Thm. 5 and Thm. 6.

Corollary 1 (0-Partial ANI ⇔ Completeness). Let ⟨C,⪯C⟩ be a poset that
is equipped with a (not necessairly order-compatible) pre-metric δC, and let ⟨D,⪯D

, δD⟩ be a quasisemi-metric order-compatible space. Let η ∈ Uco(C), ρ ∈ Uco(D)
be abstractions, and ε ∈ R∞

≥0. A monotone function f : C→ D satisfies 0-Partial
ANI w.r.t. ⟨δηC , δ

ρ
D ⟩ if and only if f satisfies Completeness w.r.t. ⟨η, ρ⟩, namely:

[∀x , y ∈ C . δηC (x , y) ≤ 0 ⇒ δρD (f (y), f (x )) ≤ 0] ⇔ [∀x ∈ C . ρf (x ) = ρ◦ f ◦η(x )]

7 Related Work

The approach we propose, transitioning from pre-metrics to ucos, involves prov-
ing a non-trivial abstraction relation between equivalence relations and ucos.
This is not the first work in this direction; indeed, in the literature [29], it has
been shown that equivalence relations on a domain C correspond to ucos on ℘(C)
(and more generally, the most concrete uco associated with an equivalence re-
lation R, has R as its kernel). In the present work, we needed to associate any
equivalence relation on C with a uco defined directly on C, rather than on ℘(C).
This shift in the domain where the uco is formalized introduces a significant
difference and makes the correspondence notably less straightforward. Indeed,
defining a uco on ℘(C) can be done straightforwardly by mapping each x ∈ C to
its equivalence class (a subset of C) as shown in [29]. In contrast, our approach
requires defining a uco directly on C, which means selecting a representative el-
ement within C for each equivalence class. This selection is nontrivial, as there
is no canonical or optimal choice that naturally leads to a well-defined uco.
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Another strongly related work is [15], where the authors define the function
transformers making any total function in Fun(C) a uco. In particular, they define
the monotonicity transformer M and an extensivity transformer, let us call it E,
on generic total functions Fun(C), showing also that M ◦E = E ◦M. In our work,
we start from Rel(C) (instead of Fun(C)), and we observed that it was possible
to move from Rel(C) to Ext(C) directly, avoiding so far the application of E and
applying M to extensive functions, thanks to the commutativity between the
two transformers [15]. Finally, I is applied precisely to monotone and extensive
functions, as it happens in [15], inhering so far all the results.

When considering the general approximation based on the combination of
pre-metrics and abstractions, we can identify related ideas in other existing
works. Partial Completeness (discussed in Sec. 5 and 6.2) is such an example.
More recently, a similar idea has been explored in the context of Deep Neural
Networks (a multi-layered machine learning model) robustness, where resistance
to adversarial attacks is modeled by combining a distance over inputs with an
abstraction of the outputs [25].

We also have a correspondence between ANI and Input Data (Non-)Usage [42]
when f is deterministic, i.e., Input Data (Non-)Usage is an instance of ANI [36].

Although Partial ANI is a novel notion, Thm. 6 (and Cor. 1) ensures that
verification mechanisms developed for Partial Completeness can be reused to
verify Partial ANI. For example, in [5], the authors introduced a proof sys-
tem for deriving triples of the form [Pre]P [Post , ε], meaning that the distance
δρD (JPK(Pre),Post) ≤ ε holds. In light of Thm. 6, a proof of [Pre]P [JPKρ(Pre), ε],
that is, JPK satisfies ε-Partial Completeness w.r.t. ⟨ι, δρD ⟩, implies that JPK also
satisfies 2ε-Partial ANI with respect to ⟨διC, δ

ρ
D ⟩, assuming διC is a quasi-metric.

A similar reasoning applies to the proof system proposed in [23] to derive Com-
pleteness, which, under the premises of Cor. 1, also yield a proof of 0-Partial
ANI. Moreover, existing (and potentially future) domain transformer techniques
developed to enforce Completeness (e.g., [26,2]) and Partial Completeness can
similarly be adapted to enforce Partial ANI.

8 Conclusion

We established a formal relation between quantitative approximations, formal-
ized by pre-metrics, and semantic approximations, captured by upper closure
operators, through a chain of Galois connections. This result shows that, under
certain structural conditions on a pre-metric, a corresponding semantic abstrac-
tion can be derived via Galois connections. Conversely, abstractions defined via
ucos can be interpreted as specific instances of pre-metrics, highlighting a bidi-
rectional connection between the two frameworks. We then formalized a com-
position of pre-metrics that first selects the domain of comparison and then
measures distances within this selected domain, thereby enabling a form of lay-
ered abstraction. Such a composition, when involving a distance characterizing
a semantic abstraction and a distance characterizing a quantitative abstraction,
defines a new form of approximation, called general approximation, combining
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semantic and quantitative approaches while keeping the two types of approxi-
mations distinct. This general approximation captures the idea of allowing an
approximate observation of data through abstraction, while also tolerating a cer-
tain error in the observation, quantified by a distance between abstractions. We
believe that this is a promising approach to approximation, already used in some
way in the literature, as we have seen in Sec. 7. In particular, we exploit this
approach for defining a new partial form of ANI, where we accept an error in the
observed output properties. We showed that this notion is strongly connected to
the well-established property of Partial Completeness in abstract interpretation,
mirroring the relation between the standard versions of ANI and Completeness.

As future work, we plan to formalize a deductive system specialized for prov-
ing Partial ANI of programs. Other deductive systems for the verification of Com-
pleteness [23] (and its local version [3]), Partial Completeness [5] and ANI [35]
have already been formalized in the literature. As already discussed in Sec. 6,
a verification mechanism for Partial ANI could build upon the framework de-
veloped for Partial Completeness and ANI [21], particularly in light of Thm. 6.
This connection is promising, even though the approach in [5] focuses on a local
variant of the property. Moreover, this future direction could inspire the de-
velopment of an abstract interpretation-based static analyzer for verifying the
Partial ANI property of programs. The challenge here lies in the fact that Partial
ANI is a hyperproperty [12], and thus the standard abstract interpretation-based
overapproximations of sets of traces cannot be directly applied.

The proposed Partial ANI notion is a global property, in the sense that it
is universally quantified over all inputs. As a future work, we plan to formal-
ize its local version, namely requiring Partial ANI over a strict subset of the
input domain, and study its relation with other local properties in the context
of abstract interpretation [1,3,6,34]. Dropping the universal quantification may
invalidate the correlation already established between the global counterparts.

We formalized abstractions as ucos, which have been proven to be equivalent
to Galois insertions [16]. In the future, we would like to consider weaker abstrac-
tion notions able to formalize properties that do not necessarily admit a best
abstraction, such as the domain of convex polyhedra [28] or formal languages [4].
In this direction, the notion of weak closures defined in [35] could be considered.

Finally, in the literature there are numerous quantitative program properties
under various formalisms (e.g. Quantitative Data Usage [38,37], Approximated
Non-Interference [18], etc.) and other could be obtained by applying the general
approximation mechanism of Sec. 4 (e.g. a quantitative general version of pro-
gram monotonicity [6] or program continuity [9,11]). It could be interesting to
build a taxonomy of quantitative program properties, in which the quantification
mechanisms are expressed within a unified formalism, such as the combination of
pre-metrics and abstractions presented in Sec. 4, and to study the assumptions
under which one property implies another.
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