
Quantitative Static Timing Analysis

Denis Mazzucato[0000−0002−3613−2035], Marco Campion[0000−0002−1099−3494],
and Caterina Urban[0000−0002−8127−9642]

INRIA & ENS | PSL,
{denis.mazzucato,marco.campion,caterina.urban}@inria.fr

Abstract. Programming errors in software applications can often be dif-
ficult to detect, as they may appear without clear indications of failure.
One such example is when certain input variables have an unexpected im-
pact on the program’s behavior. As an indicator of the program’s runtime
behavior, this work studies the impact of input variables on the number of
loop iterations in a program. Such information is valuable for debugging,
optimizing performance, and analyzing security vulnerabilities, such as in
side-channel attacks where execution times can be exploited. To address
this issue, we propose a sound static analysis based on abstract interpre-
tation to quantify the impact of each input variable on the global number
of iterations. Our approach combines a dependency analysis with a global
loop bound analysis to derive an over-approximation of the impact quan-
tity. We demonstrate our prototype tool in the S2N-Bignum library for
cryptographic systems to certify the absence of timing side-channels.

1 Introduction

Detecting programming errors that yield a plausible yet incorrect or unsafe be-
havior is a challenging task. Particularly when these errors do not lead to obvious
failures, like program crashes, but may degrade performance or introduce secu-
rity vulnerabilities. One source of such errors may arise from the unexpected
impact of input variables on the program’s runtime. For instance, in the context
of security, an unexpected impact of input variables on the program’s runtime
could reveal sensitive information [45], leading to potential security threats. Even
in cryptography, where programs are mathematically robust, vulnerabilities to
timing attacks persist, depending on the implementation choices and design.
Kocher [21] demonstrated that widely used public key cryptographic algorithms,
like RSA, are vulnerable to timing attacks, and may leak information about the
secret key. The value of such attacks lies in their simplicity; attackers do not need

https://doi.org/10.5281/zenodo.12790236

2 Denis Mazzucato, Marco Campion, and Caterina Urban

to possess detailed knowledge of the program implementation or engage in com-
putationally expensive operations. Merely the information of which primitives
are used in the program is enough. For example, knowledge that the exponentia-
tion operation, commonly found on cryptographic programs, is performed using
the square-and-multiply algorithm can enable an attacker to exploit the pro-
gram’s runtime to infer the secret key [45]. Indeed, Dhem et al. [13] mounted
such attack against CASCADE smart cards, observing timing differences dur-
ing the square operations of the square-and-multiply algorithm. Furthermore,
knowing the timing behavior of a program could certify intended behavior or re-
veal latent flaws by matching developers’ expectations with the actual program
behavior. For performance optimization, identifying input variables that most
significantly affect loop iterations can help developers focus on critical code seg-
ments [30]. As a consequence, achieving a comprehensive understanding of the
impact of input variables on the program runtime is paramount. In this study
we focus on quantifying the impact of input variables on the number of loop
iterations in a program, as an indicator of the program’s runtime behavior.

Related issues such as worst-case execution time [44], timing side-channel
attacks [23, 32, 36], and termination analyses [40, 34] have been thoroughly
addressed in the literature. Unlike worst-case execution time analysis, which
generates an invariant on loop iterations, our approach quantifies the impact
of each input variable across this invariant. Our work complements timing side-
channel attack analyses by providing a quantitative measure. While quantitative
information flow analyses [24, 12, 17] theoretically could infer similar informa-
tion, they are designed to measure a quantity considering all the sensitive input
variables together, rather than individually.

In this paper, we propose a static analysis based on abstract interpretation to
quantify the impact of input variables on global number of iterations. We leverage
an underlying global loop bound analysis to derive an over-approximation of the
global loop bound and encode the quantification of each input variable’s impact
as a linear programming problem. Our approach blends syntactic and seman-
tic information: to improve accuracy, the global loop bound analysis generates
invariants as a set of linear constraints; to improve scalability, we combine the
global loop bound analysis with a syntactic dependency analysis [42], reducing
the number of variables to analyze.

Our approach is implemented in TimeSec: a sound, automatic, and open-
source static analyzer1. We demonstrate the effectiveness of our tool in the real-
world library S2N-Bignum2 for cryptographic applications. Notably, we certify
the S2N-Bignum library’s immunity to timing side-channel attacks on certain
numerical input variables by showing that they have no impact on loop iterations.
Additionally, we evaluate TimeSec against programs drawn from the SV-Comp
benchmark3.

1 https://github.com/denismazzucato/timesec
2 https://github.com/awslabs/s2n-bignum
3 https://sv-comp.sosy-lab.org/2024

https://github.com/denismazzucato/timesec
https://github.com/awslabs/s2n-bignum
https://sv-comp.sosy-lab.org/2024

Quantitative Static Timing Analysis 3

1 def Add(p, z, m, x, n, y):
2 r = min(p, m)
3 s = min(p, n)
4 if (r < s):
5 t = p - s
6 q = s - r
7 # i = 0
8 # a = 0
9 for (; r > 0; r--):

10 # s = x [i]
11 # w = y [i]
12 # z [i] = s + w + a
13 # i = i + 1
14 # a = (w < a) | |
15 # (s + w < s) | |
16 # (s + w + a < s)
17 do:
18 # r = y [i]
19 # b = (r < a) | |
20 # (r + a < r)
21 # z [i] = r + a
22 # i = i + 1
23 q--
24 # a = b
25 while (q > 0)
26 . . .

26 . . .
27 else:
28 t = p - r
29 q = r - s
30 # i = 0
31 # b = 0
32 for (; s > 0; s--):
33 # r = x [i]
34 # w = y [i]
35 # z [i] = r + w + b
36 # i = i + 1
37 # b = (w < b) | |
38 # (r + w < r) | |
39 # (r + w + b < r)
40 for (; q > 0; q--):
41 # r = x [i]
42 # z [i] = r + b
43 # i = i + 1
44 # b = (r < b) | |
45 # (r + b < r)
46 if (t > 0):
47 # z [i] = b
48 while (t > 0):
49 # i = i + 1
50 t--
51 # i f (t > 0) :
52 # z [i] = 0

Fig. 1: Program Add, computing the sum of two numbers x and y into z.

Contributions. We claim the following contributions:

1. In Section 4, we define quantitative input data usage for global loop bounds,
our property of interest.

2. In Section 5, we propose a static analysis based on abstract interpretation,
employing a linear constraint abstract domain, global loop bound analysis,
and linear programming encoding to quantify input variable impact on loop
iterations. We discuss implementation features of TimeSec for scalability
and efficiency in Section 6.

3. Finally, in Section 7, we evaluate TimeSec against the S2N-Bignum library
and the SV-Comp benchmark.

2 Overview

In this section, we present an overview of our quantitative analysis using the
program depicted in Figure 1, referred to as Add, which resembles the addition
function decompiled from the S2N-Bignum library. The statements that are not

4 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 1: A few executions to show how many times the program Add iterates.
The symbol “ ∗ ” represents any value.

Add(p, z, m, x, n, y) ⇝
global

number of iterations
Add(0, ∗, 0, ∗, 0, ∗) ⇝ 0
Add(1, ∗, 0, ∗, 0, ∗) ⇝ 1
Add(2, ∗, 0, ∗, 0, ∗) ⇝ 2
Add(0, ∗, 1, ∗, 0, ∗) ⇝ 0
Add(1, ∗, 1, ∗, 0, ∗) ⇝ 1
Add(2, ∗, 1, ∗, 0, ∗) ⇝ 2
Add(0, ∗, 0, ∗, 1, ∗) ⇝ 0
Add(1, ∗, 0, ∗, 1, ∗) ⇝ 1
Add(2, ∗, 0, ∗, 1, ∗) ⇝ 2

relevant to the number of iterations of loops are commented out (cf. #). The goal
of program Add is to compute the sum of two given numbers x and y, storing the
result into z. The input variables x, y, and the output z are represented in the
form of arrays, respectively of length m, n, and p, of 64-bit unsigned integers. Add
computes the column addition of the two input arrays. For instance, assuming
x = [3 8], y = [4] and size of z is 3, then Add(3, z, 2, [3 8], 1, [4]) computes
[3 8]+ [4] = [0 4 2], where the result is stored back into z, available in the calling
context of the function. Our goal is to quantify the impact of each input variable
on the number of loop iterations. The bigger the impact, the more influence the
input variable may have on the runtime.

Our Approach. We abstract the runtime of the program by the sum of the
number of iterations of all the loops. For clarity, Figure 1 highlights only the
statements of the program Add that are relevant to the loop iterations. Specifi-
cally, Add starts by computing the minimum length of the input numbers x and
y compared to z, and stores the results into r and s, respectively Line 2 and 3.
Then, the first conditional statement (Line 4) checks whether r is smaller than
s. If true, it computes two loops, the first one (Line 9) iterates r times to sum
x and y until completion of x, and the second one (Line 17) iterates s− r times
over the remaining of y. On the other hand, the else branch (Line 27) computes
a loop of s iterations to sum x and y until completion of y, and another of r−s
iterations over the remaining of x, respectively Line 32 and 40. At the end, a
final loop (Line 48) iterates t times to apply padding in the array z.

It is trivial to conclude that the number of iterations in Add does not depend
on the values of the input arrays x, y, and z, as no relevant statement in Figure 1
uses them. On the other hand, determining that even the length variables m and
n do not influence the number of iterations of the loops in Add, is quite harder
as it requires a precise numerical invariant. From Table 1, we can observe that
the number of iterations of the program Add is influenced solely by the input
variable p as only variations in its value lead to different numbers of iterations. In
fact, the total number of iterations performed by the program, referred to as the

Quantitative Static Timing Analysis 5

global number of iterations, is exactly the initial value of p, which is the length
of the output array z. This is the information our analysis aims to capture.

Assuming a deterministic system, an input variable x has an influence on the
global number of iterations when, by arbitrarily fixing the values of all the other
variables, there exist (at least) two different input values for x that lead to a
different global number of iterations. In our case, consider the first and second
row of Table 1, these two executions differ in the value of the input variable p
(cf. respectively of value 0 and 1), and they lead to a different global number of
iterations (cf. respectively 0 and 1). Whereas, the variations of the input variable
m do not affect the global number of iterations, e.g., both the first and the fourth
row of Table 1 (cf. respectively of value 0 and 1 for m) lead to 0 iterations.
Generally, Add(i, . . .), for i ≥ 0, leads to i iterations. In our framework, we
quantify such impact by considering the range of the global number of iterations
from variations of the input variable under analysis. In the example of Figure 1,
if we assume p, m, n ∈ [0, u] where u ∈ N, then the length of the range of possible
values for the global number of iterations from variations in the value of p is
u; that is, our impact measure. Note that, the impact quantity does not always
coincide with the upper bound on the global number of iterations. For instance,
the impact of m and n is 0 as the global number of iterations is not influenced by
their values. Our goal is to develop a static analysis capable of quantifying the
impact of each input variable to the global number of iterations of a program.
Specifically, our impact quantity measures the variations on the number of loop
iterations for terminating executions, as non-terminating executions yield an
infinite number of iterations.

Static Analysis. Global loop bound analyses [7, 37] consider the aggregate be-
havior of all the loops of a program to generate an invariant with respect to the
global number of iterations. In our work, we aim to quantify the contribution
of each input variable with respect to the global loop bounds. To this end, we
propose a static analysis that employs an underlying global loop bound analysis
and a linear programming encoding to automatically infer a sound upper bound
on the impact of each input variable.

In order to make the analysis feasible, we first identify which statements in the
program under analysis are relevant to the computation of the global number
of iterations. We do so by employing a syntactic dependency analysis [42] to
collect, for each program statement, an over-approximation of the set of program
variables that influence the loop iterations. Then, a global loop bound analysis
infers a sound upper bound on the global number of iterations using the program
simplified by the syntactic dependency analysis. Figure 1 is already the result of
the syntactic dependency analysis, where irrelevant statements are commented
out. The global loop bound analysis discovers the following invariant:

nit = p ∧ 0 ≤ p ≤ u (1)

where p refers to the initial value of p, and nit is the global number of iterations.

6 Denis Mazzucato, Marco Campion, and Caterina Urban

Impact Quantification. We employ a linear programming encoding based on the
invariant generated by the global loop bound analysis, cf. Equation (1). Given
an input variable of interest, we isolate its contribution by removing it from the
invariant. For example, removing p from “nit = p ∧ 0 ≤ p ≤ u” results in:

0 ≤ nit ≤ u (2)

this operation is called the projection operation. We quantify the impact by the
range of all the possible values of nit resulting from perturbations of an input
variable. Computationally, this impact quantity is the distance k between the
maximum and minimum values of nit, denoted by nit and nit respectively.
Our linear programming problem aims to maximize the distance k, subject to
the constraints defined by two projected invariants: Equation (2) where nit and
nit respectively substitute nit, allowing them to vary independently. Formally,
to compute the impact of p, we solve the following linear programming problem:

maximize k

subject to 0 ≤ nit ≤ u

∧ 0 ≤ nit ≤ u

∧ 0 ≤ k ≤ nit− nit

which is achieved at k = u. On the other hand, we consider the impact of the
other input variables m and n. To this end, we remove m (or equivalently n) from
the invariant Equation (1). Since m and n do not appear in the invariant, the
projection operation does not modify it. Hence, after substituting the maximum
and minimum values of nit, we solve the following linear programming problem:

maximize k

subject to nit = p ∧ 0 ≤ p ≤ u

∧ nit = p ∧ 0 ≤ p ≤ u

∧ 0 ≤ k ≤ nit− nit

Clearly, k maximizes at 0 as it holds that nit = nit = p, meaning that the
input variables m and n have no impact on the global number of iterations. As
a result, with the combination of the syntactic dependency analysis, the global
loop bound analysis, and the linear programming encoding, we are able to over-
approximate the impact of each input variable on the global number of iterations
of a program. Section 5.3 includes a more complex example to demonstrate the
capabilities of the linear programming encoding, especially in scenarios where
the invariant computed by the global loop bound analysis does not already reveal
the impact of an input variable.

Timing Side Channel Attacks. When the program Add is employed in crypto-
graphic applications, their safety relies also on the safety of Add. A potential
attacker could exploit the timing behavior of the program Add to infer secret in-
formation of the underlying cryptographic system. For instance, consider the fic-
titious cryptographic program Check of Figure 2. It utilizes Add to check whether

Quantitative Static Timing Analysis 7

53 def Check(key , secret , p):
54 z = malloc(p)
55 Add(p, z, p, secret , p, key)
56 out = 1
57 for i in range(p):
58 if z[i] != 0:
59 out = 0
60 return out

Fig. 2: Program Check employs the program Add to check whether a user provided
input key is equal to a hidden secret secret.

a user provided input number, represented by the array key of length p, is equal
to a secret. Such secret has been previously negated and stored in the array
secret, of length p. Therefore, to check whether the user provided input is equal
to the secret, the program Check computes the sum of the user input and the
secret, then checks if the result is all zeros. In the context of timing side-channel
attacks, an attacker could exploit the timing behavior of the program Check to
infer the secret information stored in the array secret. Specifically, the number
of iterations of the program Check is given by the initial value of the variable p
(for loop at Line 57), plus the number of iterations of the program Add (Line 55).
If the number of iterations of the program Add were influenced by the values of
the input array x (instantiated with secret in Line 55), then the attacker could
exploit the runtime of the program Add to infer the secret information. As the
S2N-Bignum library is designed for cryptographic applications, certifying that
the runtime of its primitives depends only on the nominal length variables (cf.
p, m, n) rather than their values (cf. z, x, y) is crucial to ensure the security of
cryptographic applications that employ it.

With our work, an impact strictly greater than 0 on the global number of
iterations means that there is a potential timing side-channel over the input
variable under analysis.

3 Related Work

Loop bound analyses are widely studied in the literature, as they are essential
for various program analyses, including termination analysis, WCET analysis,
and side-channel analysis. In this section, we discuss the most relevant works in
these areas and compare them with our approach.

Worst-Case Execution Time. Worst-Case Execution Time (WCET) Analysis
aims to derive sound upper bounds on the execution time of programs (see Wil-
helm et al. [44] for a survey). On a broader perspective, the problem of deriving
an upper bound on the number of loop iterations is a particular case of the prob-
lem of deriving loop bounds [4, 14], which aims to infer invariants on the number

8 Denis Mazzucato, Marco Campion, and Caterina Urban

of iterations of a single specific loop. Global loop bound analyses, instead, con-
sider the aggregate behavior of all the loops of a program [7, 37]. Our work
is orthogonal to the existing literature on WCET and loop bound analysis as
we do not generate invariants on the global number of iterations itself. Instead,
we focus on quantifying the impact on the global number of loop iterations of
each input variable individually. However, we leverage an underlying global loop
bound analysis to understand the input-output relationship involving the global
loop counter.

Side-Channels Analysis. Side-channel attacks exploit vulnerabilities in crypto-
graphic system implementations rather than directly targeting computational
complexity [21]. These attacks, including those based on power consumption [22]
and speculative executions [20, 26], can leak sensitive information without phys-
ical tampering [45]. Various methods have been proposed to quantify the infor-
mation leaked through side-channels. The quantitative analysis of side-channel
attacks, initially introduced by Köpf and Basin [23], utilizes model counting and
a greedy algorithm to mitigate the exponential growth of potential paths that
must be examined. Phan et al. [32, 33] and Saha et al. [36] apply symbolic ex-
ecution to enumerate the equivalence classes of program’s output values, and
utilizes entropy measures to quantify the information leakage. Other static anal-
yses, e.g., Assaf et al. [2] and Clark et al. [8], are instead based on abstract
interpretation. However, our work differs by quantifying the impact of each in-
put variable separately, rather than providing a comprehensive quantification for
all input variables. This fine-grained analysis is essential for identifying specific
variables that significantly influence program behavior. While quantitative anal-
yses theoretically could infer similar information, their entropy measures are not
designed for this purpose [28], and they usually require k-times self-composition
[3, 39], which is computationally expensive [1]. Instead, our approach only re-
quires a single abstract analysis and leverages variable projections to separate
the contributions of each input variable [43, 27].

Input Data Usage. The syntactic dependency analysis proposed by Urban and
Müller [42] can be seen as the qualitative counterpart to our quantitative defini-
tion. It holds that whenever the measured impact is zero, the input variable is
definitely unused, w.r.t. the number of iterations of the loop. Indeed, by consid-
ering only the syntactic dependencies, we would have obtained an abstraction of
the input data usage property. The qualitative definition of Urban and Müller
[42] additionally considers non-deterministic systems, we discuss a possible ex-
tension to non-deterministic systems in Section 8.

4 Quantitative Input Data Usage for Global Loop Bounds

In this section, we present some preliminaries on program computations, then
we introduce our property of interest – quantitative input data usage for global
loop bounds.

Quantitative Static Timing Analysis 9

Λ→JskipKS def
= S

Λ→Jx := eKS def
= {s[x← v] | v ∈ AJeKS}

Λ→Jassert bKS def
= BJbKS

Λ→Jif b then stmt else stmt′KS def
=

Λ→JstmtK(BJbKS) ∪ Λ→Jstmt′K(BJ¬bKS)

Λ→Jwhile b do stmt doneKS def
= BJ¬bK(lfp F)

F(X)
def
= S ∪ Incrnit(Λ

→JstmtK(BJbKX)) (3)

Λ→Jstmt; stmt′KS def
= Λ→JstmtK(Λ→Jstmt′KS)

Λ→Jentry stmtKS def
= Λ→JstmtK(S[nit← 0]) (4)

Fig. 3: Concrete forward reachability semantics Λ→JPK.

4.1 Program Semantics

We introduce a simple sequential programming language which we use for illus-
tration throughout the rest of the paper. The variables are statically allocated,
represented by the set V, and the only data type is the numerical values in
I ∈ {N,Z,R}. The finite set ∆ ⊆ V contains the input variables. The syntax of
the language is given by the following grammar:

e ::= v | x | e+ e | e− e (Arithmetic expressions)
b ::= e ≤ v | e = v | b ∧ b | ¬b (Boolean expressions)

stmt ::= skip | x := e | assert b (Statements)
| if b then stmt else stmt

| while b do stmt done

| stmt; stmt

P ::= entry stmt (Programs)

where v ∈ I is a constant value, and x ∈ V is a variable. Statements can be
defined recursively via the conditional, looping, or composition statement. The
entry point of a program P is a statement. We introduce a variable nit ̸∈ V,
called the global loop counter, to count the global number of iterations through
the program execution. The set Σ is a (potentially infinite) set of program states,
i.e., maps from variables in V+ def

= V ∪ {nit} to values I. In the following, I≥0
def

=
{n ∈ I | n ≥ 0} denotes the set of non-negative values, and I∞ the set of values
extended with the symbol ∞.

The semantics of a program is a mathematical characterization of its behav-
ior for all possible input data. In this work, we are interested in the impact of
input variables on the global number of iterations at the end of the program

10 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 2: Dependency semantics of program Add. The global number of iterations
is highlighted in blue on the right.

Λ→JAddK(⟨ p, m, n, . . . , nit ⟩) = ⟨ p, m, n, . . . , nit ⟩
0 0 0 ∗ 0 0 0 0
1 0 0 ∗ 1 0 0 1
2 0 0 ∗ 2 0 0 2
0 1 0 ∗ 0 1 0 0
1 1 0 ∗ 1 1 0 1
2 1 0 ∗ 2 1 0 2
0 0 1 ∗ 0 0 1 0
1 0 1 ∗ 1 0 1 1
2 0 1 ∗ 2 0 1 2
...

...
...

...
...

...
...

...
a b c ∗ a b c a

Σ Σ

Λ
⇝
Add

computation. Thus, our concrete semantics for a program P is the dependency
semantics Λ

⇝
P ∈ ℘(Σ × Σ) which captures the dependencies between states

before and after the execution of a program. We write Λ
⇝
P to denote the depen-

dency semantics of a particular program P, the same applies for other semantics
defined in this work. The semantics Λ

⇝
P is defined as:

Λ
⇝
P

def

= {⟨s, s′⟩ | s ∈ Σ ∧ s′ ∈ Λ→JPK{s}} (5)

where Λ→JPK ∈ ℘(Σ) → ℘(Σ) is the standard reachability semantics instru-
mented to collect the global loop counter in the variable nit. Formally, Λ→JPK
is defined inductively on the syntax of our language in Figure 3. The semantics for
arithmetic AJeK ∈ ℘(Σ) → ℘(I) and boolean expressions BJbK ∈ ℘(Σ) → ℘(Σ)
are the standard ones and therefore omitted. To update the value of a variable
x ∈ V+ in a state s ∈ Σ with the value v ∈ I, we write s[x ← v]. Hence,
s[x← v](x) = v holds in the updated state. We lift the update operation to sets
of states, i.e., S[x← v]

def

= {s[x← v] | s ∈ S} where S ∈ ℘(Σ).
The reachability semantics Λ→JPK collects the global number of iterations

in the counter variable nit, semantically incremented after each loop iteration
(cf. Equation (3)) via the transformer Incrnit(S)

def

= {s[nit← s(nit) + 1] | s ∈
S}. At the beginning (cf. Equation (4)), we initialize the global loop counter to
0. The rest of the semantics is standard. Note that, our semantics consider only
terminating traces as non-terminating traces yield an infinite number of loop
iterations. We discuss the handling of non-terminating traces in Section 8.

Example 1. The dependency semantics of program Add in Figure 1, Λ⇝Add, is de-
fined in Table 2. For brevity, we omit the values of states that are not relevant.
As noted in Section 2, the global loop counter nit at the end of the computation
(on the right of Table 2) is equal to the initial value of the input variable p (on

Quantitative Static Timing Analysis 11

the left of Table 2). Instead, variations in the value of the input variables m and
n, or any other variable, do not affect the value of the global loop counter.

4.2 Quantitative Input Data Usage

Building on the dependency semantics, we define our property of interest – quan-
titative input data usage for global loop bounds. We define a property by its ex-
tension, that is, the set of elements that manifest such property [9]. We consider
properties of programs, with dependency semantics in ℘(Σ ×Σ), which are sets
of sets of dependencies in ℘(℘(Σ × Σ)). The strongest property of the depen-
dency semantics Λ

⇝
P is the standard collecting semantics ΛC

P ∈ ℘(℘(Σ × Σ)),
defined as ΛC

P
def

= { Λ⇝P }, which is satisfied only and exactly by Λ
⇝
P . Therefore,

a program P satisfies a given property F ∈ ℘(℘(Σ ×Σ)), written P |= F , if and
only if the dependency semantics Λ⇝P belongs to F , or equivalently, its collecting
semantics ΛC

P is a subset of F , i.e., P |= F ⇔ ΛC
P ⊆ F .

Our goal is to quantify the impact of a specific input variable on the global
number of loop iterations of a program. To this end, we employ the framework
proposed by Mazzucato et al. [28] for the verification of quantitative input data
usage. Such framework employs an impact function Impacti ∈ ℘(Σ×Σ)→ I∞≥0,
which maps program semantics to a non-negative domain of quantities extended
with +∞, where i ∈ ∆ denotes the current input variable of interest of the
program under analysis. Note that, the impact function Impacti may return
+∞ even the set of possible values that variables can take, cf. I, is finite, as
the impact of an input variable may be unbounded, and increase indefinitely.
The k-bounded impact property B≤k

i ∈ ℘(℘(Σ × Σ)) is defined as the set of
dependency semantics Λ

⇝
P whose impact of the input variable i is bounded by

k ∈ I∞≥0. Formally,

B≤k
i

def
= {Λ⇝P ∈ ℘(Σ ×Σ) | Impacti(Λ

⇝
P) ≤ k} (6)

where P is the program under evaluation. The following theorem shows that
our concrete semantics Λ

⇝
P is sound and complete for the verification of this

k-bounded impact property.

Theorem 1 (Soundness and Completeness of ΛC
P). For any program P,

the collecting semantics ΛC
P

def

= {Λ⇝P } is sound and complete for the verification
of the k-bounded impact property B≤k

i . Formally:

P |= B≤k
i ⇔ ΛC

P ⊆ B≤k
i (7)

Proof. The proof follows directly by unfolding the definitions of the collecting
semantics, i.e., ΛC

P
def

= {Λ⇝P }, and k-bounded impact property, cf. Equation (6).

We require the impact function Impacti to be monotonic in the amount of de-
pendencies, so that larger semantics generate higher impact quantities. Formally,
for all S, S′ ∈ ℘(Σ ×Σ), it holds that

S ⊆ S′ ⇒ Impacti(S) ≤ Impacti(S
′) (8)

12 Denis Mazzucato, Marco Campion, and Caterina Urban

By the monotonicity result, we note that the k-bounded impact property B≤k
i is

a subset-closed property Mazzucato et al. [28], formally:

S ⊆ S′ ∧ S′ ∈ B≤k
i ⇒ S ∈ B≤k

i (9)

Equation (9) is significant because it allows the use of abstract interpretation-
based state reachability analyses to verify the k-bounded impact property. In
combination with Theorem 1, it holds that the program P satisfies the k-bounded
impact property B≤k

i whenever the property holds for an over-approximation of
the dependency semantics Λ

⇝
P .

From the impact definitions already introduced by Mazzucato et al. [28], we
select Rangei ∈ ℘(Σ×Σ)→ N for its definition matching our intuition on what
we need to measure, and the fact that it can be efficiently computed by a linear
programming encoding (see later in Section 5.1). The impact Rangei determines
the length of the range of outcomes, in our instance, the global number of loop
iterations, from all the possible variations in the input variable i. In the following,
for any set of states S ∈ ℘(Σ), we write S|K ∈ K → I for the states of S
reduced to the subset of variables K ⊆ V. For instance, Σ|∆ is the set of states
restricted to the input variables. The predicate s =K s′ indicates that the two
states s, s′ ∈ Σ|K agree on the values of the variables in K, i.e., s =K s′

def⇔
∀x ∈ K. s(x) = s′(x). Formally, Range is defined as follows:

Rangei(S)
def
= sup

s0∈Σ|∆
Length({s′(nit) | ⟨s, s′⟩ ∈ S ∧ s =∆\{i} s0}) (10)

where Length(X)
def

= sup X − inf X if X ̸= ∅, otherwise Length(∅) def

= 0. The
sup and inf are the supremum and infimum operators, respectively. From the
definition above it is easy to note that Rangei(S) is monotonic in the amount
of dependencies S.

Example 2. Consider the dependency semantics Λ⇝Add defined in Table 2. For
brevity, we consider states as Σ = {⟨p,m, n⟩ | p,m, n ∈ [0, u]}, where p is
the value of p, m of m, n of n, all ranging in the interval [0, u]. Assuming we
are interested in the impact of the input variable p, Rangep(Λ

⇝
Add) considers

all possible input values s0 ∈ Σ|∆, on the left of Table 2. We collect all the
input-output dependencies ⟨s, s′⟩ ∈ Λ⇝Add that agree with the input value s0 on
the variables m and n, i.e., s ={m,n} s0. For instance, s0 = ⟨0, 0, 0⟩ collects the
dependencies that start from states in {⟨p, 0, 0⟩ | 0 ≤ p ≤ u}. From this set of
dependencies, we consider only the output values s′(nit), on the right of Table 2.
For instance, regarding the input s0 = ⟨0, 0, 0⟩, we collect the output values [0, u].
Then, we apply the operator Length([0, u]) = sup [0, u]− inf [0, u] = u. For all
the input values, the maximum value is taken; we obtain Rangep(Λ

⇝
Add) = u.

Let us analyze the impact of other input variables, e.g. the input variable
m. By considering the input value s0 = ⟨0, 0, 0⟩, we collect the dependencies
that start from states in {⟨0,m, 0⟩ | m ∈ [0, u]}. As we notice from Table 2,
the number of iterations starting from any of these states is always 0. Hence,

Quantitative Static Timing Analysis 13

Length({0}) = sup {0} − inf {0} = 0. For all the input values, we obtain:
Rangem(Λ

⇝
Add) = Rangen(Λ

⇝
Add) = 0. We conclude that:

Add |= B≤up , Add |= B≤0n , and Add |= B≤0m

As a consequence, we can infer that there exist two executions starting from
a different value for the input variable p that differ in the global number of
iterations by at most u. On the contrary, any variation in the input variables m
and n does not affect the global number of iterations.

5 A Static Analysis for Global Loop Bounds

In this section, we present a sound computable static analysis to quantify an
upper bound on the impact of input variables on the global loop counter. The
soundness of the approach leverages: (1) an abstract domain of conjunctions
of linear constraints, (2) a sound global loop bound analysis to collect the de-
pendencies of the loop counter nit from the input variables, and (3) a linear
programming encoding as a sound implementation of the impact Range.

5.1 Conjunctions of Linear Constraints

We define the numerical abstract state domain used in the global loop bound
analysis. In principle, our abstract domain could be any convex abstract domain
subsumed by the polyhedra domain [10], such as the interval domain, octagon
domain [29], or the polyhedra domain itself. The elements of the abstract domain
are conjunctions of linear constraints of the form:

c1 · x1 + . . . + cn · xn + cn+1 ≥ 0

where xj ∈ V+ are variables and cj ∈ I are constant values. For a better read-
ability, we avoid writing the constant-variable multiplication term ci · xi when
ci = 0; and we abuse the notation, e.g. for the constraint x1 = x2, to denote the
conjunction of the two linear constraints x1 − x2 ≥ 0 and x2 − x1 ≥ 0. The ab-
stract domain is a lattice ⟨D♮,⊑D♮

,⊔♮,⊓♮,⊤♮,⊥♮⟩ equipped with a concretization
function γD

♮ ∈ D♮ → ℘(Σ), defined as:

γD
♮

(d)
def
= {s ∈ Σ | ∀ (c1 · x1 + . . .+ cn · xn + cn+1 ≥ 0) ∈ d.

c1 · s(x1) + . . .+ cn · s(xn) + cn+1 ≥ 0}

Additionally, in order to be effectively used in the context of the global loop
bound analysis, we assume:

(i) an operator Subs♮Jx ← eK ∈ D♮ → D♮ to substitute the variable x ∈ V+

with the expression e,
(ii) an operator Filter♮JbK ∈ D♮ → D♮ to handle boolean expressions b,
(iii) a widening operator ∇♮ ∈ D♮ × D♮ → D♮ to ensure termination of the

analysis, and

14 Denis Mazzucato, Marco Campion, and Caterina Urban

(iv) a project operator Proj♮x ∈ D♮ → D♮ to remove the input variable x from
the given abstract state.

These requirements are satisfied by any of the commonly used numerical abstract
domains [10, 29].

5.2 Global Loop Bounds

The global loop bound semantics ΛgJPK ∈ D♮ → D♮ is a backward abstract
semantics that generates an invariant over the global loop counter nit. We define
the abstract dependency semantics Λ∗P ∈ D♮ as the global loop bound semantics
ΛgJPK starting from the post-condition nit = 0. During the backward analysis,
the value of nit increases from 0 to an over-approximation of the possible global
number of iterations. As a consequence, the pre-condition invariant generated
by the abstract dependency semantics Λ∗P over-approximates relations between
nit and the initial values of variables in V. Formally,

Λ∗P
def
= ΛgJPK(nit = 0)

The concretization function γ∗ ∈ D♮ → ℘(Σ × Σ) maps an abstract state to a
set of input-output dependencies. Its goal is to preserve the relations between
input values and the global loop counter nit. Potentially, γ∗(Λ∗P) introduces
dependencies that are not present in the concrete dependency semantics Λ

⇝
P .

Nevertheless, these additional dependencies are irrelevant for the quantification
of the impact. Formally:

γ∗(Λ∗P)
def
= ∪ {

⋃
v∈I

s[nit← v]×
⋃

x∈V,v∈I
s[x← v] | s ∈ γD

♮

(Λ∗P)} (11)

Equation (11) restores the relations between concrete input-output dependen-
cies. The result of the abstract dependency semantics Λ∗P is an abstract element
relating variables’ input values to the global loop counter nit. Specifically, the
input states are

⋃
v∈I s[nit← v] where we reset nit to any possible value, as it is

irrelevant for input states. The output states
⋃

x∈V,v∈I s[x← v] preserve only the
value of the global loop counter nit and ignore the other variables. Potentially,
such operation may introduce dependencies that do not belong to the concrete
dependency semantics Λ⇝P . This is due to the fact that the abstract dependency
semantics Λ∗P loses relations among the variables of output states. However, the
additional dependencies do not affect the value of the global loop counter nit
and are irrelevant for the quantification of the impact.

Example 3. We consider the example in Figure 1, where states Σ are tuples
⟨p,m, n, nit⟩, respectively for the variables p, m, n, and the global loop counter
nit. Let us assume that the computation of the abstract dependency semantics
on the program Add results in:

Λ∗Add = ΛgJAddK(nit = 0) = (p = nit)

Quantitative Static Timing Analysis 15

Table 3: Concretization of the abstract dependency semantics of program Add.
The global number of iterations is highlighted in blue on the right.

{⟨ p, m, n, v ⟩ | v ∈ I} × {⟨ v, v′, v′′, p ⟩ | v, v′v′′ ∈ I}
0 0 0 ∗ ∗ ∗ ∗ 0
1 0 0 ∗ ∗ ∗ ∗ 1
2 0 0 ∗ ∗ ∗ ∗ 2
0 1 0 ∗ ∗ ∗ ∗ 0
1 1 0 ∗ ∗ ∗ ∗ 1
2 1 0 ∗ ∗ ∗ ∗ 2
0 0 1 ∗ ∗ ∗ ∗ 0
1 0 1 ∗ ∗ ∗ ∗ 1
2 0 1 ∗ ∗ ∗ ∗ 2
...

...
...

...
...

...
...

...

⋃
v∈I ⟨p,m, n, p⟩[nit← v]

⋃
x∈V,v∈I ⟨p,m, n, p⟩[x← v]

γ∗(Λ∗Add)

γD
♮
(Λ∗Add) γD

♮
(Λ∗Add)

Then, the concretization of the abstract element p = nit is:

γD
♮

(p = nit) = {⟨p,m, n, p⟩ | p,m, n ∈ I}

where ⟨p,m, n, p⟩ is the concrete state in which the input variable p (first p in
the tuple) is equal to the loop counter nit (last p in the tuple). The goal of
the concretization of γ∗(Λ∗Add) is to over-approximate the dependency seman-
tics Λ⇝Add. Additional dependencies may be introduced, but they are irrelevant
for the quantification of the impact. For instance, consider the state ⟨2, 0, 1, 2⟩
from γD

♮
(p = nit), representing input-output dependencies from p = 2, m = 0,

and n = 1 to an output state with 2 iterations. We concretize the following
dependencies: {⟨2, 0, 1, v⟩ | v ∈ I} × {⟨v, v′, v′′, 2⟩ | v, v′, v′′ ∈ I}.

From any state ⟨p,m, n, p⟩ we obtain the left part of Table 2, cf. the input
states, by resetting the value global loop counter nit:⋃

v∈I
⟨p,m, n, p⟩[nit← v] = {⟨p,m, n, v⟩ | v ∈ I}

Regarding the right part of Table 2, cf. the output states, we are only interested
in the value of the global loop counter nit. We reset the value of all the other
variables, obtaining:⋃

x∈V,v∈I
⟨p,m, n, p⟩[x← v] = {⟨v, v′, v′′, p⟩ | v, v′, v′′ ∈ I}

The modifier x ∈ V collects all the variables but the global loop counter nit.
Table 3 shows the concretization of the abstract dependency semantics, which
over-approximates the dependency semantics Λ⇝Add of Table 2.

16 Denis Mazzucato, Marco Campion, and Caterina Urban

ΛgJskipKd def
= d

ΛgJx := eKd def
= Subs♮Jx← eKd

ΛgJassert bKd def
= Filter♮JbKd

ΛgJif b then stmt else stmt′Kd def
=

Filter♮JbK(ΛgJstmtKd) ⊔♮ Filter♮J¬bK(ΛgJstmt′Kd)

ΛgJwhile b do stmt doneKd def
= lim

n
F ♮
n

F ♮
0

def
= d

F ♮
n+1

def
= F ♮

n ∇♮ F ♮(F ♮
n)

F ♮(a)
def
= Filter♮J¬bKd ⊔♮ Filter♮JbK(ΛgJstmtK(Subs♮Jnit← nit− 1Ka))

ΛgJstmt; stmt′Kd def
= ΛgJstmtK(ΛgJstmt′Kd)

ΛgJentry stmtKd def
= ΛgJstmtKd

Fig. 4: Abstract backward semantics ΛgJPK for global loop bound analysis.

For the abstract dependency semantics Λ∗P to be sound, we require the con-
cretization γ∗ to over-approximate the dependency semantics Λ

⇝
P , formally:

Λ
⇝
P ⊆ γ∗(Λ∗P) (12)

The soundness condition, cf. Equation (12), is of significant importance as it
allows any sound global loop bound analysis ΛgJPK to verify the k-bounded
impact property B≤k

i . A possible candidate semantics for the global loop bound
analysis ΛgJPK ∈ D♮ → D♮ is defined in Figure 4. The semantics ΛgJPK is a
backward co-reachability semantics instrumented to increment the loop counter
nit after each loop iteration. The loop counter nit is handled semantically in the
abstract domain without loss of precision. The rest of the semantics is classical.
The following result states the soundness of the backward semantics defined in
Figure 4.

Theorem 2 (Soundness of ΛgJPK). The semantics ΛgJPK ∈ D♮ → D♮ defined
in Figure 4 is a sound over-approximation of the dependency semantics Λ

⇝
P :

Λ
⇝
P ⊆ γ∗(Λ∗P) = γ∗(ΛgJPK(nit = 0))

Proof (Sketch). The dependency semantics Λ
⇝
P of Equation (5) is defined as

the set of input-output dependencies employing the concrete forward reachabil-
ity semantics Λ→JPK. Equivalently, on Figure 5 we define a concrete backward
reachability semantics Λ←JPK to compute the dependency semantics Λ

⇝
P . The

backward semantics Λ←JPK is the concrete reachability semantics starting from
nit = 0 and decrementing backwardly the loop counter nit after each loop iter-
ation. The backward decrement is defined as Decr←nit(S)

def
= {s ∈ Σ | s[nit ←

Quantitative Static Timing Analysis 17

Λ←JskipKS def
= S

Λ←Jx := eKS def
= {s ∈ Σ | v ∈ AJeK ∧ s[x← v] ∈ S}

Λ←Jassert bKS def
= BJbKS

Λ←Jif b then stmt else stmt′KS def
=

BJbK(Λ←JstmtKS) ∪ BJ¬bK(Λ←Jstmt′KS)

Λ←Jwhile b do stmt doneKS def
= lfp F

F(X)
def
= BJ¬bKS ∪ BJbK(Λ←JstmtKDecr←nit(X))

Λ←Jstmt; stmt′KS def
= Λ←JstmtK(Λ←Jstmt′KS)

Λ←Jentry stmtKS def
= Λ←JstmtK(S[nit← 0])

Fig. 5: Concrete backward reachability semantics Λ←JPK

s(nit)− 1] ∈ S}. Employing the backward semantics, we define the dependency
semantics Λ

⇝
P as Λ

⇝
P

def
= {⟨s, s′⟩ | s′ ∈ Σ ∧ s ∈ Λ←JPK{s}}. It is easy to prove

by induction on the syntax of the program that the global loop bound semantics
ΛgJPK of Figure 4 is an over-approximation of the concrete backward reachabil-
ity semantics Λ←JPK. As a consequence, it holds that the abstract dependency
semantics is an over-approximation of the backward concrete dependency seman-
tics, i.e., Λ ⇝

P ⊆ γ∗(Λ∗P). As both forward and backward reachability semantics
are concrete semantics equipped with the global loop counter nit, they equiva-
lently represent the same set of input-output dependencies, i.e., Λ⇝P = Λ

⇝
P . By

transitivity, we conclude that: Λ⇝P = Λ
⇝

P ⊆ γ∗(ΛgJPK(nit = 0)). ⊓⊔

5.3 Linear Programming Encoding

Finally, we present a linear programming encoding Range♮
i ∈ D♮ → I∞≥0 to com-

pute the abstract implementation of the impact Rangei. The problem is defined
as:

Range♮i(d) = maximize k (13)

subject to Proj♮i(Subs♮Jnit← nitK(d)) (14)

∧ Proj♮i(Subs♮Jnit← nitK(d)) (15)
∧ 0 ≤ k ≤ nit− nit (16)

where nit, nit are fresh variables. Since k should be an integer variable, we
specifically solve a mixed-integer linear programming problem. As seen in the
overview, Equation (14) substitutes the variable nit with nit to account for the
maximal value of the global loop counter nit. Then, it projects away the input
variable i to encompass any possible variation of that variable. Equation (15)
substitutes the variable nit with nit for the minimal value of nit, and again

18 Denis Mazzucato, Marco Campion, and Caterina Urban

projects away the input variable i. Hence, the set of constraints from Equation
(14) and Equation (15) only differ in the variable of the loop counter, respectively
nit and nit. Finally, the objective function, Equation (13), maximizes the value
of the bound k, which ranges between 0 and nit− nit, cf. Equation (16). The
maximum value of the bound k is the length of the range of the feasible values
for the loop counter nit.

Example 4. We consider again the example of the program Add in Figure 1.
Let us assume that p ∈ [0, u] and the computation of the abstract dependency
semantics on the program Add results in:

Λ∗Add = (p = nit ∧ 0 ≤ p ≤ u)

To compute the abstract range Range♮p for the input variable p, we solve the linear
programming problem Equation (13)–Equation (16). Where Equation (14) and
Equation (15) are respectively:

Proj♮p(Subs♮Jnit← nitK(p = nit ∧ 0 ≤ p ≤ u))

= Proj♮p(p = nit ∧ 0 ≤ p ≤ u) = 0 ≤ nit ≤ u

Proj♮p(Subs♮Jnit← nitK(p = nit ∧ 0 ≤ p ≤ u))

= Proj♮p(p = nit ∧ 0 ≤ p ≤ u) = 0 ≤ nit ≤ u

Therefore, the linear programming encoding for Range♮p(p = nit ∧ 0 ≤ p ≤ u)
is defined as:

maximize k

subject to 0 ≤ nit ≤ u

∧ 0 ≤ nit ≤ u

∧ 0 ≤ k ≤ nit− nit

which maximizes at u. On the other hand, projecting away the other input
variables leaves the invariant p = nit ∧ 0 ≤ p ≤ u unchanged. Thus, k maximizes
at 0 as the variable p is equal to both nit and nit. Interestingly, we did not
lose any precision regarding the k-bounded impact property as Rangei(Λ

⇝
Add) =

Range♮
i(Λ
∗
Add) for any input variable i in the program Add.

Example 5. Additionally, we consider a more complex example to demonstrate
the capabilities of the linear programming encoding, in a scenario where the
invariant computed by the global loop bound analysis does not already reveal
the impact of input variables. Let us assume that the computation of the abstract
dependency semantics for a program P results in:

Λ∗P =

(
2

5
· y+ 1

5
· x ≤ nit ≤ y+

1

5
· x ∧ x, y ∈ [0, 5]

)
To compute the abstract range Range♮x for the input variable x, we first project
away the variable x from the abstract state, obtaining: 2

5 ·y ≤ nit ≤ y+1 ∧ y ∈

Quantitative Static Timing Analysis 19

y+
1

2
5
· y

y

nit

0 1 2 3 4 5

1

2

3

4

5

6

k = 4

(a) 2
5
· y ≤ nit ≤ y+ 1

1
5
· x+ 2

1
5
· x

x

nit

0 1 2 3 4 5

1

2

3

4

5

6

k = 5

(b) 1
5
· x ≤ nit ≤ 1

5
· x+ 2

Fig. 6: Graphical representation of the feasible regions for the two linear pro-
gramming problems of Example 5.

[0, 5]. Then, we solve the linear programming problem, where we substitute the
variable nit with nit and nit to respectively maximize and minimize the global
loop counter nit:

maximize k

subject to
2

5
· y ≤ nit ≤ y+ 1 ∧ y ∈ [0, 5]

∧ 2

5
· y ≤ nit ≤ y+ 1 ∧ y ∈ [0, 5]

∧ 0 ≤ k ≤ nit− nit

The linear programming encoding maximizes at k = 4 where y = 5, Figure
6a shows graphically the feasible region and maximization point. On the other
hand, to compute the abstract range Range♮y for the input variable y, we solve
linear programming encoding where we project away the variable y from the
abstract state, obtaining:

maximize k

subject to
1

5
· x ≤ nit ≤ 1

5
· x+ 2 ∧ x ∈ [0, 5]

∧ 1

5
· x ≤ nit ≤ 1

5
· x+ 2 ∧ x ∈ [0, 5]

∧ 0 ≤ k ≤ nit− nit

This second linear programming problem maximizes at k = 5 for any value of
x, Figure 6b shows graphically the feasible region and maximization point for

20 Denis Mazzucato, Marco Campion, and Caterina Urban

this second programming problem. As a result, we obtain Range♮x(Λ
∗
P) = 4 and

Range♮y(Λ
∗
P) = 5, showing that the variable y has a higher impact on the global

loop counter nit than the variable x.

The next result shows that Range♮
i is a sound implementation of the impact

Rangei, by means of Definition 3 in Mazzucato et al. [28]. That is, the abstract
quantity is always higher than the concrete counterpart.
Lemma 1 (Sound Implementation of Range). For any program P the
following holds:

Rangei(Λ
⇝
P) ≤ Range♮i(Λ

∗
P)

Proof. We show that Rangei(γ∗(Λ∗P)) ≤ Range♮
i(Λ
∗
P) by contradiction. Let us

assume that Rangei(γ∗(Λ∗P)) > Range♮
i(Λ
∗
P) and Range♮

i(Λ
∗
P) = k. Then, by

definition of Rangei, cf. Equation (10), there exists two concrete states, differ-
ing only in the value of i, such that the difference in the value of the global loop
counter nit is greater than k. As a consequence, in the abstract implementation
Range♮

i, the distance between nit and nit should maximize at a value greater
than k. This contradicts the assumption that k = Range♮

i(Λ
∗
P). From Theorem

2 and the fact that Rangei is monotonic, cf. Equation (8), we conclude that:
Rangei(Λ

⇝
P) ≤ Rangei(γ∗(Λ∗P)) ≤ Range♮

i(Λ
∗
P). ⊓⊔

Thus, by the application of the quantitative framework, it holds that our static
analysis is sound when employed to verify the property of interest B≤k

i for the
program P.
Theorem 3 (Soundness of Range♮

i). Given a program P and an input variable
i ∈ ∆, the following holds:

Range♮i(Λ
∗
P) ≤ k ⇒ P |= B≤k

i

Proof. From the fact that the abstract semantics Λ∗P is sound with respect to the
dependency semantics Λ⇝P , cf. Theorem 2, and that Range♮

i is a sound implemen-
tation of the impact Rangei, cf. Lemma 1, we obtain that Rangei(Λ

⇝
P) ≤ k.

Hence, it means that the collecting semantics ΛC
P is a subset of the property B≤k

i .
By Equation (7) we conclude that P |= B≤k

i . ⊓⊔

6 Implementation

To support our claims, we implemented a tool, called TimeSec, in about 3000
lines of Python code4. The global loop bound analysis is based on the numerical
library Apron [19], we instrumented the analysis with widening and narrowing
operators after 2 fixpoint iterations. For the linear programming encoding, we
used the Python library SciPy5. An artifact of TimeSec, including the source
code, the benchmarks, and the evaluation results, is available in Zenodo6. In
this section, we discuss some implementation features that make the analysis
scalable, precise, and able to handle real-world programs.
4 https://github.com/denismazzucato/timesec
5 https://scipy.org
6 https://doi.org/10.5281/zenodo.12790236

https://github.com/denismazzucato/timesec
https://scipy.org
https://doi.org/10.5281/zenodo.12790236

Quantitative Static Timing Analysis 21

6.1 Syntactic Dependency Analysis

As introduced in the overview, the global loop bound analysis can exploit the
syntactic dependency analysis proposed by Urban and Müller [42, Section 10].
The syntactic dependency analysis is used to determine an over-approximation of
the set of relevant variables for the global loop counter, for each program location.
We employ such information to do program slicing. As a consequence, we reduce
the number of variables in the underlying abstract domain, and avoid analyzing
irrelevant statements. The program under analysis can be evaluated even in
presence of statements and expressions that are hard to handle, e.g. bitwise
operations, array manipulation, and function calls to name a few, as long as
they are not relevant. Indeed, excluding irrelevant statements from the analysis
does not affect the global loop bounds.

It is worth noting that, this syntactic dependency analysis is already an input
data usage analysis, as it already determines which variables have zero impact on
the global loop counter, and which have a non-zero impact. Indeed, the syntactic
dependency analysis is a qualitative counterpart to our quantitative definition.

Example 6. Regarding the example of Figure 1, the dependency analysis is able
to discover that most of the variables are irrelevant for the global loop bound.
Therefore, we are able to exclude most of the statements, including the bit-
wise operations regarding the remainder (e.g. Line 14), the array manipulation
(e.g. Line 10), the array indices (e.g. Line 10), the conditional for the padding
at the end (cf. Line 51). Overall, we excluded 33 from the original 52 lines of
code (about the 60%), and the analysis was able to handle the program with
ease without any specific handling for the excluded statements. Regarding the
amount of variables, we reduced the number of variables from 13 to 7 (without
counting the global loop counter nit).

Additionally, even though our formal syntax does not include the use of
arrays, real-world programs often do. To remain sound, the syntactic depen-
dency analysis can be extended to handle arrays, by considering a conservative
points-to analysis to determine the shared memory locations. For our work, we
consider a classical flow-insensitive points-to analysis [38] to determine an over-
approximation of the memory locations shared by the variables at any program
location. Whenever the analysis discovers that a variable is potentially used, all
the variables that share the same memory location are considered relevant as
well.

6.2 Optimizations

Many works in the literature propose to combine forward and backward phases
to provide tighter invariants [16, 35, 43]. Therefore, in our tool we combine an
initial forward reachability analysis to enhance both the syntactic dependency
analysis and the global loop bound analysis. Furthermore, we employ a narrowing
operator to refine the upper bound of the least fixpoint computed by the widening
operator [9]. Widening alone often leads to an imprecise over-approximation of

22 Denis Mazzucato, Marco Campion, and Caterina Urban

loop counts. Therefore, in our implementation, we follow the widening phase
with a simple narrowing that performs joins instead of widening.

Example 7. Consider the first for-loop at Line 9 of the program Add in Figure
1. Here, we report it in the form of a while loop for simplicity:

1 assert r >= 0
2 while (r > 0):
3 r = r - 1

Without a forward pre-analysis, the backward analysis would infer that the
global number of iterations is always greater or equal to the initial value of
r. The missing information is that the value of r is always non-negative at the
beginning of the loop. However, a forward pre-analysis could easily propagate
such information to the backward analysis. As a consequence, the backward anal-
ysis would infer that the global number of iterations is always equal to the initial
value of r. The main difference of the two approaches can be observed when the
result of the backward analysis is used to verify the global loop bound property.
With the invariant discovered without the forward analysis, cf. r ≥ nit, the
impact quantity maximizes the linear programming problem Range♮

i(r ≥ nit)
to u (cf. 0 ≤ r ≤ u), for any input variable i, even when i ̸= r. The linear
programming problem Range♮

i(r ≥ nit) is:

maximize k

subject to r ≥ nit

∧ r ≥ nit

∧ 0 ≤ r ≤ u

∧ 0 ≤ k ≤ nit− nit

In this case, the variable nit and nit are not constrained to be equal, thus they
can be minimized and maximized independently as long as they satisfy the other
constraints, resulting in k = u. On the other hand, the invariant discovered with
the help of the forward pre-analysis is r = nit. The impact quantity maximizes
the linear programming problem Range♮

i(r = nit) to 0 whenever the input vari-
able i ̸= r. In such case, the linear programming problem Range♮

i(r = nit)
is:

maximize k

subject to r = nit

∧ r = nit

∧ 0 ≤ r ≤ u

∧ 0 ≤ k ≤ nit− nit

Note that, both nit and nit are constrained to be equal. Therefore, their max-
imum distance is 0.

Quantitative Static Timing Analysis 23

Example 8. To show that also the syntactic dependency analysis can benefit
from a forward pre-analysis (and in general, from a numerical analysis [31]),
consider the following program:

1 x = y
2 x = x - y

The program above assigns first the value of y to x and then subtracts y from x.
The result is that x is zero at the end of the program execution, while y maintains
its input value. Let us assume we are interested in the variables that are relevant
to compute the value of x. Without a forward pass, the syntactic dependency
analysis (a backward analysis) would infer that y is relevant for the value of
x after handling the second assignment at Line 2. Then, the first assignment
at Line 1 would add no dependency as x is overwritten. On the other hand,
a forward analysis could be able to infer that at the end of the program, the
value of x is zero. As a consequence, the information that x is a constant value
supersedes the information that x is used (at the end of the program). Therefore,
the syntactic dependency analysis would infer that y is, in fact, irrelevant.

As all these optimizations and analysis stages may increase the analysis time
(see Table 5 for an ablation study), we allow the final user to choose whether to
enable them.

7 Evaluation

This section first showcases the potential of TimeSec on the S2N-Bignum
library7. Then, we show an evaluation on the SV-Comp benchmark8, focusing on
the effect of changes in the input space, the analysis time, and the categorization
of input variables. See Mazzucato et al. [28, Section 5] for an evaluation of the
quantitative framework on a set of demonstrative programs showing in detail
changes in the impact for different input variables.

S2N-Bignum Library The S2N-Bignum library is a collection of arithmetic
routines designed for cryptographic applications. All the routines are written in
pure machine code, designed to be callable from C and other high-level languages.
Each function is written in a constant-time style, to avoid leaking information
through timing side-channels. Constant-time means that the execution time of
an S2N-Bignum operation is independent of the actual numbers involved, de-
pending only on their nominal sizes. If a result does not fit in the provided
size, it is systematically truncated modulo that size. Allocation of memory is
always the caller’s responsibility, the S2N-Bignum interface only uses pointers
to pre-existing arrays. The developers avoid the use of certain machine instruc-
tions known to be problematic for constant-time execution, such as the division

7 https://github.com/awslabs/s2n-bignum
8 https://sv-comp.sosy-lab.org/2024

https://github.com/awslabs/s2n-bignum
https://sv-comp.sosy-lab.org/2024

24 Denis Mazzucato, Marco Campion, and Caterina Urban

instruction. Furthermore, on ARM platforms, the library sets the DIT (Data
Independent Timing) bit to have hardware guaranteed constant-time execution.

The library is fully verified for functional correctness in HOL Light [18],
but the verification of the constant-time property is still ongoing. At present,
the constant-time property is enforced by the strict compliance to the constant-
time design discipline and the use of empirical testing. Their empirical result9
shows that the variation in runtime with respect to the data being manipulated
is within a few percent in all the cases. Unfortunately, the empirical study is not
sufficient to guarantee the constant-time property, as it is not exhaustive and
does not cover all the possible inputs. On the other hand, the quantitative anal-
ysis of TimeSec provides a formal verification of the constant-time property. In
particular, whenever an input variable has no impact on the global number of
loop iterations, it is formally guaranteed that the number of iterations is indepen-
dent of the values of that input variable. Formally, a program P is free of timing
side-channels with respect to an input variable i ∈ ∆, if and only if P |= B≤0i .
By Theorem 3, we know that this is implied from Range♮

i(Λ
∗
P) ≤ 0. Therefore,

the verification of timing side-channel freedom is sound with respect to our
quantitative analysis of input variables. We partition the input variables of the
S2N-Bignum library into two subsets. The nominal size variables and additional
parameters that may safely influence the runtime into ∆|S. The variables that
represent the actual numerical values and additional parameters that, instead,
should not influence the execution time into ∆|N. The S2N-Bignum library is
free of timing side-channels, whenever for any program P in S2N-Bignum and
any numerical input variable i ∈ ∆|N, it holds that Range♮

i(Λ
∗
P) = 0.

For our setup, we consider the disassembled operations10 of the S2N-Bignum
library as input programs with a few rewriting steps to fit the set of supported
operations of our tool. Mostly, the rewriting steps soundly resolve the few jumps
that arise from the disassembling process. Our benchmark contains a total of
72 disassembled arithmetic routines, excluding only a single operation (program
bignum_modexp) that has function calls, which our tool does not yet support.
On average, each program has about 83 lines of code, for a total of 5984 lines of
code.

The library contains a total of 1172 variables, 272 of which are input variables.
Table 4 reports the analysis findings for the input variables of the S2N-Bignum
library: column Maybe Dangerous reports variables which could be prone to
timing side-channel attacks (namely Range♮

i(Λ
∗
P) > 0), column Zero Impact

reports the variables with an impact quantity of zero (namely Range♮
i(Λ
∗
P) = 0).

The property B≤0
i holds for input variables i that have an impact quantity of zero

(column Zero Impact). Overall, we soundly verified that 187 (69%) of the input
variables do not influence the global number of iterations, while 85 (31%) are
maybe dangerous and maybe susceptible to timing side-channel attacks. Column

9 (Last accessed: 7th August 2024) https://github.com/awslabs/s2n-bignum?tab=
readme-ov-file#benchmarking-and-constant-time

10 We used Ghidra (https://ghidra-sre.org) to disassemble the library and extract
the arithmetic routines.

https://github.com/awslabs/s2n-bignum?tab=readme-ov-file#benchmarking-and-constant-time
https://github.com/awslabs/s2n-bignum?tab=readme-ov-file#benchmarking-and-constant-time
https://ghidra-sre.org

Quantitative Static Timing Analysis 25

Table 4: Input composition of the S2N-Bignum library. The variables Safe
∆|S are highlighted in green, while the variables Numerical ∆|N in red. No
numerical variable should be Maybe Dangerous.
Program Input Variables ∆ Maybe Zero

Safe ∆|S Numerical ∆|N Dangerous Impact
Add s1, s3, s5 n2, n4, n6 s1 s3, s5, n2, n4, n6
Amontifier s1 n2, n3, n4 s1 n2, n3, n4
Amontmul s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Amontredc s1, s3, s6 n2, n4, n5 s1, s3, s6 n2, n4, n5
Amontsqr s1 n2, n3, n4 s1 n2, n3, n4
Bitfield s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Bitsize s1 n2 s1 n2
Cdiv s1, s3 n2, n4, n5 s1, s3 n2, n4, n5
Cdiv_exact s1, s3 n2, n4, n5 s1 n2, s3, n4, n5
Cld s1 n2 s1 n2
Clz s1 n2 s1 n2
Cmadd s1, s4 n2, n3, n5 s1, s4 n2, n3, n5
Cmnegadd s1, s4 n2, n3, n5 s1, s4 n2, n3, n5
Cmod s1 n2, n3 s1 n2, n3
Cmul s1, s4 n2, n3, n5 s1, s4 n2, n3, n5
Coprime s1, s3 n2, n4, n5 s1, s3 n2, n4, n5
Copy s1, s3 n2, n4 s1, s3 n2, n4
Copy_row_from_table s3, s4 n1, n2, n5 s3, s4 n1, n2, n5
Copy_row_from_table_16_neon s3 n1, n2, n4 s3 n1, n2, n4
Copy_row_from_table_32_neon s3 n1, n2, n4 s3 n1, n2, n4
Copy_row_from_table_8n_neon s3, s4 n1, n2, n5 s3, s4 n1, n2, n5
Ctd s1 n2 s1 n2
Ctz s1 n2 s1 n2
Demont s1 n2, n3, n4 s1 n2, n3, n4
Digit s1 n2, n3 s1 n2, n3
Digitsize s1 n2 s1 n2
Divmod10 s1 n2 s1 n2
Emontredc s1 n2, n3, n4 s1 n2, n3, n4
Eq s1, s3 n2, n4 s1, s3 n2, n4
Even s1 n2 s1, n2
Ge s1, s3 n2, n4 s1, s3 n2, n4
Gt s1, s3 n2, n4 s1, s3 n2, n4
Iszero s1 n2 s1 n2
Le s1, s3 n2, n4 s1, s3 n2, n4
Lt s1, s3 n2, n4 s1, s3 n2, n4
Madd s1, s3, s5 n2, n4, n6 s1, s3, s5 n2, n4, n6
Modadd s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Moddouble s1 n2, n3, n4 s1 n2, n3, n4
Modifier s1 n2, n3, n4 s1 n2, n3, n4
Modinv s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Modoptneg s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Modsub s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Montifier s1 n2, n3, n4 s1 n2, n3, n4
Montmul s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Montredc s1, s3, s6 n2, n4, n5 s1, s3, s6 n2, n4, n5
Montsqr s1 n2, n3, n4 s1 n2, n3, n4
Mul s1, s3, s5 n2, n4, n6 s1, s3, s5 n2, n4, n6
Muladd10 s1 n2, n3 s1 n2, n3
Mux s2 n1, n3, n4, n5 s2 n1, n3, n4, n5
Mux16 s1 n2, n3, n4 s1 n2, n3, n4
Negmodinv s1 n2, n3 s1 n2, n3
Nonzero s1 n2 s1 n2
Normalize s1 n2 s1 n2
Odd s1 n2 s1, n2
Of_word s1 n2, n3 s1 n2, n3
Optadd s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Optneg s1 n2, n3, n4 s1 n2, n3, n4
Optsub s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Optsubadd s1 n2, n3, n4, n5 s1 n2, n3, n4, n5
Pow2 s1 n2, n3 s1 n2, n3
Shl_small s1, s3 n2, n4, n5 s1, s3 n2, n4, n5
Shr_small s1, s3 n2, n4, n5 s1 s3, n2, n4, n5
Sqr s1, s3 n2, n4 s1, s3 n2, n4
Sub s1, s3, s5 n2, n4, n6 s1 s3, s5, n2, n4, n6
Word_bytereverse n1 n1
Word_clz n1 n1
Word_ctz n1 n1
Word_divstep59 n1, n2, n3, n4 n1, n2, n3, n4
Word_max n1, n2 n1, n2
Word_min n1, n2 n1, n2
Word_negmodinv n1 n1
Word_recip n1 n1

Total Variables: 93 179 85 187

26 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 5: Ablation study of TimeSec on the S2N-Bignum benchmark.

Component
Input Variables Total Analysis Time (s)
Maybe

Dangerous
Zero

Impact
Deps Inv LP Tot

No Optimizations 266 6 0.0 16.36 7.79 26.45 ± 0.81
TimeSec 85 187 51.81 55.83 0.27 110.48 ± 4.94

Safe ∆|S reports the nominal size variables (called si), column Numerical ∆|N
reports the numerical variables (called ni, where i is the index of the variable as
they appear in the function signature). Table 4 shows that no numerical variable
is identified as potentially dangerous, indeed Maybe Dangerous ∩ ∆|N = ∅
in all rows. We conclude that the S2N-Bignum library is free of timing side-
channels.

We perform an ablation study to evaluate the impact of the dependency anal-
ysis and the other optimizations on our tool on the S2N-Bignum library. The
first row No Optimizations of Table 5 reports the analysis findings without
the various analysis stages of Section 6, while the second row TimeSec shows
the finding of the full TimeSec analysis. Without the dependency analysis we
do not apply program slicing anymore, we handle bitwise operations and array
accesses with a conservative over-approximation that may lead to false positives.
Generally, we notice that the invariant inferred from the global loop bound anal-
ysis alone is not tight enough to produce a precise quantification of the impact.
Therefore, we are not able to infer useful insights from our analysis as 266 input
variables are maybe dangerous. In particular, the 6 input variables with zero im-
pact belong to acyclic programs. Overall, the quantification of impact removes
around 10% of the variables deemed maybe impactful from the syntactic depen-
dency analysis alone, resulting in a total of 85 Maybe Dangerous variables.
While this may not seem significant, the syntactic dependency analysis would
have not removed any of these variables. Regarding the analysis time, column
Deps refers to the time of the dependency analysis, column Inv for the global
loop bound analysis, and column LP for the quantification of impact. The time
is reported in seconds for the evaluation of the 72 programs. The last column
Tot reports the total analysis time, with the standard deviation after the sym-
bol ±. Table 5 does not show the time for parsing, logging and other overheads
of the tool. We notice that without the optimizations, the analysis time is about
4 times faster than the full analysis, with most time spent on the linear program-
ming problem as more variables need to be quantified. In this case, the standard
deviation of the total analysis time (after ± in the column Tot) is the lowest,
meaning that the analysis time is more consistent among programs. With only
the dependency analysis on, the analysis usually takes around 50 seconds and,
without optimizations, the global loop bound analysis is quite fast. The full anal-
ysis is about 100 seconds in total, with an average of 1.22 seconds per program.
Most of the analysis time is spent on the syntactic dependency and the global
loop bound analysis. Notably, the linear programming problem to quantify the

Quantitative Static Timing Analysis 27

Table 6: Quantitative results for the SV-Comp benchmark.

Benchmark
Bound
Ranges

Quantities (<∞) Analysis Time (s)
Average Std Deps Inv LP Tot

Termination
Crafted

(68 programs)

0− 10 6.12 6.16 0.51 3.54 0.32 6.19
0− 100 50.13 48.44 0.51 3.5 0.32 6.18
0− 1000 500.13 483.18 0.5 3.53 0.32 6.15
≥ 0 0.0 0.0 0.5 2.4 0.26 5.03

[−∞,+∞] 0.0 0.0 0.46 2.01 0.05 4.38

Termination
Crafted

Lit
(140 programs)

0− 10 435.46 1892.32 1.56 16.6 1.02 23.08
0− 100 38248.52 194557.7 1.54 16.66 1.01 23.04
0− 1000 38577853.04 192885029.79 1.55 16.66 1.01 23.03
≥ 0 0.0 0.0 1.49 9.66 0.77 15.8

[−∞,+∞] 0.0 0.0 1.4 8.27 0.22 13.65

impact of input variables takes less than half a second in total for the whole
library. However, the analysis time is not consistent for all the programs, in fact,
the analysis time for each program ranges from 0.03 to 33.88 seconds (standard
deviation of about 4 seconds). Nevertheless, the full analysis is also the most
precise, as it is able to exclude the most number of maybe dangerous variables.

In conclusion, the S2N-Bignum library is a good candidate for our analysis,
as it is a real-world cryptographic library potentially vulnerable against timing
side-channel attacks for numerical input variables. Up to the decompilation phase
and the chosen abstraction of the runtime, cf. the global number of iterations,
our analysis soundly verifies that no input variable containing numerical data is
susceptible to timing side-channel attacks.

SV-Comp Benchmark The SV-Comp benchmark11 is a collection of pro-
grams used for verification competition. The benchmark is divided into different
categories, such as termination, memory safety, reachability. As of 2024, the
SV-Comp repository hosts thousands of programs, which are written in C and
annotated with assertions. In this evaluation, we conduct a comprehensive study
focusing on: the effect of changes in the input space, the analysis time, and the
categorization of input variables. We focus on the categories of Termination
Crafted, and Termination Crafted Lit. These categories describe pro-
grams that are crafted to be challenging for termination analysis. In total, we
selected 208 programs (68 from Termination Crafted, and 140 from termi-
nation Crafted Lit), with 5705 total lines of code. An average of 27 lines of
code per program.

To evaluate TimeSec against the SV-Comp benchmark, we consider the
input variables as unbounded non-negative integers. We repeat the analysis 5
times, each time with a different bound on the input variables, ranging from
[0, 10] to [−∞,+∞]. Table 6 reports, for each bound range, the average quantity

11 https://sv-comp.sosy-lab.org/2024

https://sv-comp.sosy-lab.org/2024

28 Denis Mazzucato, Marco Campion, and Caterina Urban

Table 7: Analysis findings for the SV-Comp benchmark.

Benchmark
Bound
Ranges

Variables
May Impact Zero Impact

Termination
Crafted

(68 programs)

0− 10 99/135 13/284
0− 100 99/135 13/284
0− 1000 99/135 13/284
≥ 0 99/135 13/284

[−∞,+∞] 105/141 7/278

Termination
Crafted

Lit
(140 programs)

0− 10 275/336 36/707
0− 100 277/338 34/705
0− 1000 277/338 34/705
≥ 0 277/338 34/705

[−∞,+∞] 286/348 25/695

of impact (column Average), the standard deviation (column Std), and the
analysis time for the dependency analysis (column Deps), the global loop bound
analysis (column Inv), and the quantification of the impact (column LP). We
exclude to take into account quantities that are infinite, as they would disrupt
the average calculation. Note that, even in presence of a bounded input space,
the impact of a variable could be infinite if the global loop bound analysis is not
able to infer a bound on the possible number of iterations.

From Table 6, we observe that the average quantity of impact increases with
the bound range (column Average). This is expected, as the larger the input
space, the more the variance in the values of input variables, and the more
the impact on the global number of iterations. However, as soon as the input
space is unbounded, the measured quantities that are not infinite are very low.
In this setting, a variable often has either an impact of 0 or +∞. Regarding
the analysis time, as expected we notice that the syntactic dependency analysis
(column Deps) is not influenced by the bound range. The reason is that the
syntactic dependency analysis is not a semantics analysis and does not depend
on the values of the input variables. On the contrary, the global loop bound
analysis (column Inv) and the quantification of the impact (column LP) are
affected. From bounded to unbounded input space, we observe a reduction in
the analysis time. In fact, in the context of a bigger input space, the analysis
precision drops drastically and thus propagate less information faster. The global
loop bound analysis is the most time-consuming part of the analysis. Overall,
the analysis time is acceptable, with an average of 0.11 seconds per program, and
a total of about 126 seconds for the whole benchmark suite, cf. 208 programs for
5 different bound ranges (1055 programs in total).

Table 7 shows the composition of variables of the two categories of SV-Comp
benchmark. The column May Impact corresponds to B≤k

i (cf. Equation (6)) for
k > 0, while the columns Zero Impact corresponds to B≤0i . For each bound
range, we report the number of input variables / total variables (cf., local and
input variables together) that fall into each category. As expected, by enlarging

Quantitative Static Timing Analysis 29

the input space, the number of maybe dangerous variables increases, while the
number of zero used variables decreases. Overall, our analysis is able to verify
that most of the input variables influence the global number of loop iterations.
This is expected, as the benchmark is crafted to be challenging for termination
analysis, thus it is not surprising that the input variables have a significant
impact on the global number of iterations. Our analysis can do little to achieve
a tighter quantification as programs have invariants that are, on purpose, hard
to infer. In conclusion, we notice that by enlarging the input space, the number
of variables that may impact the runtime increases as more variety in the input
values leads to more impact on the global number of iterations.

8 Conclusion

In this study, we proposed a static analysis based on abstract interpretation to
quantify the impact of input variables on the global number of loop iterations.
We certified the absence of timing side-channels in the S2N-Bignum library for
cryptographic applications, demonstrating the practicality of our approach.

Looking ahead, we could extend our analysis by considering cost functions [7,
41], such as the number of executed machine instructions, to obtain a closer
abstraction of the runtime behavior of a program. Moreover, we could extend the
syntactic dependency analysis to consider jumps, allowing the analysis to work
with low-level code, without the need for decompilers and rewriting phases.

Our quantitative approach contrasts the qualitative work proposed by Urban
and Müller [42], which employs the trace semantics to address non-termination
and non-determinism. A possible solution to integrate termination in the quanti-
tative framework is to run a termination analysis [40, 41, 15], alongside the global
loop bound analysis, to add – as an output value – the potential non-termination
state. With such information, we could refine our quantitative analysis to dis-
cover termination-aware impact quantities. Indeed, by knowing that some exe-
cutions do not terminate after a certain loop could improve the precision of the
quantitative bound as we avoid considering all the successive iterations as po-
tential executions. To address non-determinism we could consider the sequence
of all possible non-deterministic choices as a parameter of the semantics [11, 31].

Another promising directions are the exploration of new impact definitions for
cyber-physical systems [25] and for abstract domains in static program analyzers,
e.g., by using pre-metrics as defined in [5, 6].

Acknowledgements We are deeply thankful to Corina Păsăreanu and the
AWS team for introducing us to the S2N-Bignum library, and to the anony-
mous reviewers of SAS 2024 for their valuable feedback. This work was partially
supported by the SAIF project, funded by the “France 2030” government invest-
ment plan managed by the French National Research Agency, under the reference
ANR-23-PEIA-0006. The participation to the conference was sponsored by the
Amazon Research Award (ARA) program12.
12 https://www.amazon.science/research-awards/recipients/corina-pasareanu

https://www.amazon.science/research-awards/recipients/corina-pasareanu

30 Denis Mazzucato, Marco Campion, and Caterina Urban

References

[1] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei. Decomposition instead of self-composition for proving the absence
of timing channels. PLDI, 2017. https://doi.org/10.1145/3140587.3062378.

[2] M. Assaf, D. A. Naumann, J. Signoles, Éric Totel, and F. Tronel. Hypercol-
lecting semantics and its application to static analysis of information flow.
ACM SIGPLAN Notices, 2017. https://doi.org/10.1145/3009837.3009889.

[3] G. Barthe, P. R. D’Argento, and T. Rezk. Secure information flow by self-
composition. IEEE, 2011. https://doi.org/10.1017/S0960129511000193.

[4] P. Cadek, C. Danninger, M. Sinn, and F. Zuleger. Using
loop bound analysis for invariant generation. FMCAD, 2018.
https://doi.org/10.23919/FMCAD.2018.8603005.

[5] M. Campion, M. Dalla Preda, and R. Giacobazzi. Partial (in)completeness
in abstract interpretation: limiting the imprecision in program analysis.
POPL, 2022. https://doi.org/10.1145/3498721.

[6] M. Campion, C. Urban, M. Dalla Preda, and R. Giacobazzi. A formal
framework to measure the incompleteness of abstract interpretations. SAS,
2023. https://doi.org/10.1007/978-3-031-44245-2_7.

[7] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional certified re-
source bounds. PLDI, 2015. https://doi.org/10.1145/2737924.2737955.

[8] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying
information flow in a simple imperative language. Journal of Computer
Security, 2007. https://doi.org/10.3233/JCS-2007-15302.

[9] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
POPL, 1977. https://doi.org/10.1145/512950.512973.

[10] P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. POPL, 1978.
https://doi.org/10.1145/512760.512770.

[11] P. Cousot and M. Monerau. Probabilistic abstract interpretation. ESOP,
2012. https://doi.org/10.1007/978-3-642-28869-2_9.

[12] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
ISBN 0201101505.

[13] J.-F. Dhem, F. Koeune, P.-A. a. Leroux, P. Mestré, J.-J. Quisquater, and
J.-L. Willems. A practical implementation of the timing attack. CARDIS,
2000. https://doi.org/10.1007/10721064_15.

[14] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper.
Loop bound analysis based on a combination of program slic-
ing, abstract interpretation, and invariant analysis. WCET, 2007.
https://doi.org/10.4230/OASICS.WCET.2007.1194.

[15] L. Gonnord, D. Monniaux, and G. Radanne. Synthesis of rank-
ing functions using extremal counterexamples. PLDI, 2015.
https://doi.org/10.1145/2813885.2737976.

[16] P. Granger. Improving the results of static analyses of programs by local de-
creasing iterations. FSTTCS, 1992. https://doi.org/10.1007/3-540-56287-
7_95.

https://doi.org/10.1145/3140587.3062378
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.23919/FMCAD.2018.8603005
https://doi.org/10.1145/3498721
https://doi.org/10.1007/978-3-031-44245-2_7
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.3233/JCS-2007-15302
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/10721064_15
https://doi.org/10.4230/OASICS.WCET.2007.1194
https://doi.org/10.1145/2813885.2737976
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1007/3-540-56287-7_95

Quantitative Static Timing Analysis 31

[17] J. W. Gray. Toward a mathematical foundation for information flow secu-
rity. IEEE, 1991. https://doi.org/10.1109/RISP.1991.130769.

[18] J. Harrison. HOL light: An overview. TPHOLs, 2009.
https://doi.org/10.1007/978-3-642-03359-9_4.

[19] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains
for static analysis. 2009. https://doi.org/10.1007/978-3-642-02658-4_52.

[20] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom. Spectre attacks: Exploiting speculative execution. 2019.
https://doi.org/10.1109/SP.2019.00002.

[21] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. CRYPTO, 1996. https://doi.org/10.1007/3-540-68697-
5_9.

[22] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. CRYPTO,
1999. https://doi.org/10.1007/3-540-48405-1_25.

[23] B. Köpf and D. A. Basin. An information-theoretic model for adaptive side-
channel attacks. CCS, 2007. https://doi.org/10.1145/1315245.1315282.

[24] B. Köpf and A. Rybalchenko. Automation of quantitative information-flow
analysis. SFM, 2013. https://doi.org/10.1007/978-3-642-38874-3_1.

[25] M. Kwiatkowska. Advances and challenges of quantitative verifi-
cation and synthesis for cyber-physical systems. SOSCYPS, 2016.
https://doi.org/10.1109/SOSCYPS.2016.7579999.

[26] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown:
Reading kernel memory from user space. USENIX Security Symposium,
2018. https://doi.org/10.1145/3357033.

[27] D. Mazzucato and C. Urban. Reduced products of abstract do-
mains for fairness certification of neural networks. SAS, 2021.
https://doi.org/10.1007/978-3-030-88806-0_15.

[28] D. Mazzucato, M. Campion, and C. Urban. Quantitative Input Usage Static
Analysis. NFM, 2024. URL https://hal.science/hal-04339001.

[29] A. Miné. The octagon abstract domain. Working Conference on Reverse
Engineering, 2001. https://doi.org/10.1109/WCRE.2001.957836.

[30] H. Omar, M. Ahmad, and O. Khan. Graphtuner: An input dependence
aware loop perforation scheme for efficient execution of approximated graph
algorithms. ICCD, 2017. https://doi.org/10.1109/ICCD.2017.38.

[31] F. Parolini and A. Miné. Sound abstract nonexploitability analysis. VM-
CAI, 2024. https://doi.org/10.1007/978-3-031-50521-8_15.

[32] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bul-
tan. Synthesis of adaptive side-channel attacks. IEEE, 2017.
https://doi.org/10.1109/CSF.2017.8.

[33] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S. Păsăreanu. Symbolic
quantitative information flow. ACM SIGSOFT Software Engineering Notes,
2012. https://doi.org/10.1145/2382756.2382791.

[34] A. Podelski and A. Rybalchenko. A complete method for the synthesis
of linear ranking functions. VMCAI, 2004. https://doi.org/10.1007/978-3-
540-24622-0_20.

https://doi.org/10.1109/RISP.1991.130769
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1145/1315245.1315282
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1109/SOSCYPS.2016.7579999
https://doi.org/10.1145/3357033
https://doi.org/10.1007/978-3-030-88806-0_15
https://hal.science/hal-04339001
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/ICCD.2017.38
https://doi.org/10.1007/978-3-031-50521-8_15
https://doi.org/10.1109/CSF.2017.8
https://doi.org/10.1145/2382756.2382791
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20

32 Denis Mazzucato, Marco Campion, and Caterina Urban

[35] X. Rival. Understanding the origin of alarms in astrée. SAS, 2005.
https://doi.org/10.1007/11547662_21.

[36] S. Saha, U. S. Barbara, U. S. Ghentiyala, and U. L. Shihua. Obtaining
information leakage bounds via approximate model counting. PLDI, 2023.
https://doi.org/10.1145/3591281.

[37] M. Sinn, F. Zuleger, and H. Veith. Complexity and resource bound analysis
of imperative programs using difference constraints. Journal of Automated
Reasoning, 2017. https://doi.org/10.1007/S10817-016-9402-4.

[38] B. Steensgaard. Points-to analysis in almost linear time. POPL, 1996.
https://doi.org/10.1145/237721.237727.

[39] T. Terauchi and A. Aiken. Secure information flow as a safety problem.
SAS, 2005. https://doi.org/10.1007/11547662_24.

[40] C. Urban and A. Miné. An abstract domain to infer ordinal-valued ranking
functions. ESOP, 2014. https://doi.org/10.1007/978-3-642-54833-8_22.

[41] C. Urban and A. Miné. A decision tree abstract domain for proving con-
ditional termination. SAS, 2014. https://doi.org/10.1007/978-3-319-10936-
7_19.

[42] C. Urban and P. Müller. An abstract interpretation framework for input
data usage. ESOP, 2018. https://doi.org/10.1007/978-3-319-89884-1_24.

[43] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly
parallel fairness certification of neural networks. OOPSLA, 2020.
https://doi.org/10.1145/3428253.

[44] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 2008. https://doi.org/10.1145/1347375.1347389.

[45] W. H. Wong. Timing attacks on RSA: revealing your secrets through the
fourth dimension. ACM, 2005. https://doi.org/10.1145/1144396.1144401.

https://doi.org/10.1007/11547662_21
https://doi.org/10.1145/3591281
https://doi.org/10.1007/S10817-016-9402-4
https://doi.org/10.1145/237721.237727
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1145/3428253
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1144396.1144401

	Quantitative Static Timing Analysis

