
Abstract Interpretation of Indexed Grammars

Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

Dipartimento di Informatica, University of Verona
{marco.campion, mila.dallapreda, roberto.giacobazzi} @ univr.it

Abstract. Indexed grammars are a generalization of context-free gram-
mars and recognize a proper subset of context-sensitive languages. The
class of languages recognized by indexed grammars are called indexed
languages and they correspond to the languages recognized by nested
stack automata. For example indexed grammars can recognize the lan-
guage {anbncn | n > 1} which is not context-free, but they cannot rec-
ognize {(abn)n | n > 1} which is context-sensitive. Indexed grammars
identify a set of languages that are more expressive than context-free
languages, while having decidability results that lie in between the ones
of context-free and context-sensitive languages. In this work we study
indexed grammars in order to formalize the relation between indexed
languages and the other classes of languages in the Chomsky hierarchy.
To this end, we provide a fixpoint characterization of the languages rec-
ognized by an indexed grammar and we study possible ways to abstract,
in the abstract interpretation sense, these languages and their grammars
into context-free and regular languages.

1 Introduction

Chomsky’s hierarchy [6] drove most of the research in theoretical computer sci-
ence for decades. Its structure, and its inner separation results between formal
languages, represent the corner stone to understand the expressive power of sym-
bolic structures. In this paper we show how abstract interpretation can be used
for studying formal languages, in particular we consider indexed languages as
our concrete semantics. This because of two reasons: (1) they lack, to the best
of our knowledge, of a fixpoint semantics and (2) they represent an intermedi-
ate family of languages between context-free (CF) and context-sensitive (CS),
therefore including CF and regular (REG) languages as subclasses.

Indexed languages have been introduced in [2] as an extension of CF lan-
guages in order to include languages such as {anbncn | n > 1}. It is known
that indexed languages are strictly less expressive than CS languages, e.g., the
language {(abn)n | n > 1} is CS but not indexed. This intermediate class be-
tween CF and CS has interesting properties, e.g., decidable emptiness test and
NP-complete membership check, where the first is undecidable and the latter is
PSPACE-complete in CS.

Indexed languages are described by indexed grammars which differ from CF
grammars in that each non-terminal is equipped with a stack on which push

2 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

and pop instructions can be performed. Moreover, the stack can be copied to all
non-terminals on the right side of each production.

Although sporadically used in the literature (we can mention its use in nat-
ural language analysis [20] and in logic programming [5]) indexed languages
represent an ideal concrete semantics for rebuilding part of Chomsky’s hierarchy
by abstract interpretation, in particular for the case of regular and CF languages.

Abstract interpretation [10, 11] is a general theory for the approximation of
dynamic systems. It generalizes most existing methodologies for static program
analysis into a unique sound-by-construction framework which is based on a
simple but striking idea: extracting properties of a system is approximating its
semantics [10]. In this paper we show that abstract interpretation can be used
for studying the relation between formal languages in Chomsky’s hierarchy.

The first step in our construction is to give a fixpoint semantics to indexed
languages (Section 4). The construction follows the one known for CS languages,
and derives a system of equations associated with each indexed grammar. We
prove that the fixpoint solution of this system of equations corresponds precisely
to the language generated by the grammar. This will provide the base fixpoint
semantics for making abstract interpretation.

We show in Section 5 that no best abstraction, which in abstract interpreta-
tion are represented by Galois Insertions, is possible between indexed languages
and respectively CF and regular languages, w.r.t. set inclusion. This means that
we need to act at the level of grammar structures (i.e., on the way languages
are generated and represented in grammatical form) in order to generate lan-
guages as abstract interpretations of an index grammar. It is therefore necessary
to weaken the structure of Galois insertion-based abstract interpretation and
consider abstractions that do not admit adjoint [12]. This is a quite widespread
phenomenon in program analysis, e.g., the polyhedra abstract domain does not
form a Galois insertion with the concrete semantics [14]. We introduce several
abstractions of grammatical structures in such a way that the abstract language
transformer associated with the system of equations of the indexed language gen-
erates the desired language. We show that certain simplifications of the produc-
tions of indexed grammars can be specified as abstractions, now in the standard
Galois insertion based framework, and that the corresponding abstract semantics
coincides precisely to classes of languages in Chomsky’s hierarchy, in our case
the class of CF languages. The main advantage is that known fixpoint character-
isation and algorithms for CF languages can be extracted in a calculational way
by abstract interpretation of the fixpoint semantics of the more concrete indexed
grammars. This shows that standard methods for the design of static program
analyses and hierarchy of semantics (e.g., see [15, 16, 9]) can be applied to sys-
tematically derive fixpoint presentations for families of formal languages and to
let abstract interpretation methods to be applicable to Chomsky’s hierarchy.

Section 6 concludes the paper with a discussion of related future works.

Abstract Interpretation of Indexed Grammars 3

2 Background

Mathematical Notation We denote with X = (X1, . . . ,Xn) a tuple X of n ele-
ments. We define with proji the projection function of the i-th element of a
tuple such that proji(X) = Xi and proj-1(X) = Xn.

Given two sets S and T , we denote with ℘(S) the powerset of S, with S ⊂ T
strict inclusion and with S ⊆ T inclusion. 〈P,6P〉 denotes a poset P with ordering
relation 6P. A function f : P → Q on poset is additive when for any Y ⊆ P :
f(
∨
P Y) =

∨
Q f(Y), and co-additive when for any Y ⊆ P : f(

∧
P Y) =

∧
Q f(Y). A

poset 〈P,6P〉 with P 6= ∅, is a lattice if ∀x,y ∈ P we have that x∨ y, x∧ y ∈ P.
A lattice is complete if for every S ⊆ P we have that

∨
S ∈ P and

∧
S ∈ P. A

lattice is denoted 〈C,6C,∨C,∧C,>C,⊥C〉.

Abstract Domains The Abstract Interpretation (AI) framework is based on the
correspondence between a domain of concrete or exact properties and a domain
of abstract or approximate properties [11]. The concrete is specified by a set C
called the concrete semantic domain and a partial function FC : C → C which
is the concrete semantic transfer function with fixpoint solution starting from a
basic element ⊥C ∈ C such that F0C(⊥C) = ⊥C and Fi+1

C (⊥C) = FC(FiC(⊥C)). In
particular, the concrete iterates may be in increasing order for a partial order
6C∈ ℘(C × C). This partial order relation may induce a partial order 〈C,6C〉
or even a complete lattice structure on C [11].

The abstract is specified by an abstract semantic domain A which is an
approximate version of the concrete semantic domain C. The objective of an
abstract interpretation is to find an abstract property a ∈ A, if any, which is
a correct approximation of the concrete semantics c ∈ C. Abstract semantics
can be specified by transfinite recursion using an abstract basis ⊥A ∈ A and an
abstract semantic function FA : A→ A such that F0A(⊥A) = ⊥A and Fi+1

A (⊥A) =
FA(F

i
A(⊥A)). The abstract iterates may be in increasing order for a partial order

6A∈ ℘(A×A) which may induce an order structure 〈A,6A,⊥A,∪A〉 ensuring
that the abstract iteration is convergent [11].

The correspondence between the concrete and abstract properties is specified
by a soundness relation σ ∈ ℘(C×A) where 〈c,a〉 ∈ σ means that the concrete
semantics c has the abstract property a. A common assumption is that every
concrete property has an abstract approximation: ∀c ∈ C : ∃a ∈ A : 〈c,a〉 ∈ σ
[11].

The Galois Insertion approach to AI is based on a Galois Insertion (or
equivalently closure operators, Moore families, complete join congruence re-
lations or families of principal ideals [11]) correspondence between concrete
and abstract properties. Galois Insertions (GI) are defined between a concrete
domain 〈C,6C〉 and an abstract domain 〈A,6A〉 which are assumed to be
at least posets [10]. A GI is a tuple (C,α,γ,A) where the abstraction map
α : C → A and the concretization map γ : A → C give rise to an adjunction:
∀a ∈ A, c ∈ C : α(c) 6A a ⇔ c 6C γ(a). Thus, α(c) 6A a and, equiva-
lently c 6C γ(a), means that a is a sound approximation of c in A. A tuple

4 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

(C,α,γ,A) is a GI iff α is additive iff γ is co-additive [10]. A GI is a Galois Con-
nection (GC) where α ◦ γ = id. Indeed, GIs ensure that α(c) actually provides
the best possible approximation of the concrete value c ∈ C on A. Whenever
we have an additive (resp. co-additive) function f between two domains we can
always build a GI by considering the right (resp. left) adjoint map induced by
f. In fact, every abstraction map induces a concretization map and viceversa,
formally γ(a) =

∨
C{c | α(c) 6A a} and α(a) =

∧
A{a | γ(a) 6C c} [10].

An Upper Closure Operator (uco) ϕ ∈ C → C on a poset 〈C,6〉 is an op-
erator that is monotone, idempotent and extensive (i.e. ∀c ∈ C c 6 ϕ(c)) [11].
Closures are uniquely determined by the set of their fixpoints ϕ(C). The set
of all closures on C is denoted by uco(C). The lattice of abstract domains
of C is therefore isomorphic to uco(C) [11]. If C is a complete lattice, then
〈uco(C),v,t,u, λx.>, id〉 is a complete lattice, where id = λx.x and for every
ρ,η ∈ uco(C), ρ v η ↔ ∀y ∈ C ρ(y) 6 η(y) ↔ η(C) ⊆ ρ(C). The glb u is
isomorphic to the so called reduced product, i.e.

d
i∈I ρi is the most abstract

common concretization of all ρi.
Given X ⊆ C, the least abstract domain containing X is the least closure

including X as fixpoints, which is the Moore-closure M(X) = {
∧
S | S ⊆ X}. Note

that
d
i∈I ρi =M(

⋃
i∈I ρi). If (C,α,γ,A) is a GI then ϕ = γ ◦ α is the closure

associated with A, such that ϕ(C) is a complete lattice isomorphic to A.

Abstract Interpretation The least fixpoint (lfp) of an operator F on a poset 〈P,6〉,
when it exists, is denoted by lfp6F, or by lfpF when 6 is clear. Any continuous
operator F ∈ C → C on a given complete lattice 〈C,6,t,u,>,⊥〉 admits a lfp:

lfp6⊥F =
∨
n∈N F

i(⊥), where for any i ∈ N and x ∈ C: F0(x) = x and Fi+1(x) =
F(Fi(x)). Given an abstract domain 〈A,6A〉 of 〈C,6C〉, F# ∈ A→ A is a correct
(sound) approximation of F ∈ C→ C when α(lfp6CF) 6A lfp6AF#. To this end
it is enough to have a monotone map α : C → A such that α(⊥C) = ⊥A and
α ◦ F 6A F# ◦ α [12]. An abstraction is complete when α ◦ F = F# ◦ α. In this
case of complete abstractions we have α(lfp6CF) = lfp6AF# [11, 21].

3 Indexed Languages

Indexed grammars were introduced by Aho in the late 1960s to model a natural
subclass of context-sensitive languages, more expressive than context-free gram-
mars with interesting closure properties [2]. In this paper we use the definition
of indexed grammar provided in [1].

Definition 1. An Indexed Grammar is a 5-tuple G = (N, T , I,P,S) such that:

(1) N, T and I are three mutually disjoint finite sets of symbols: the set N of
non-terminals, the set T of terminals and the set I of indices, where ε is a
designated symbol for the empty sequence;

(2) S ∈ N is a distinguished symbol in N, namely the start symbol;
(3) P is a finite set of productions, each having the form of one of the following:

(a) A→ α (Stack copy)

Abstract Interpretation of Indexed Grammars 5

(b) A→ Bf (Push)
(c) Af → β (Pop)
where A,B ∈ N are non-terminal symbols, f ∈ I is an index symbol and
α,β ∈ (N ∪ T)∗.

Observe the similarity to context-free grammars which are only defined by
production rules of type (3a). The above definition is a finite representation of
rules that rewrite pairs of non-terminal and sequences of index symbols that we
call stacks. A key feature of indexed grammars is that their productions in P
expand non-terminal/stack pairs of the form (A,σ), where A ∈ N and σ ∈ I∗.
So each non-terminal symbol A ∈ N together with its stack σ ∈ I∗, can be
viewed as a pair (A,σ) and the start symbol S is shorthand for the pair (S, ε).
Therefore, with a slight abuse of notation, in the rest of the paper we use α to
denote a string of terminal symbols and non-terminals symbols with its stack,
namely α ∈ ((N×I∗)∪T)∗. The string α is often referred to as a sentential form.
Given any non-empty stack σ ∈ I+, the top symbol is the left-most index. The
stack is implicit and is copied, to all non-terminals only, when the production is
applied. So, for example, the type (3a) production rule A → aBC is shorthand
for (A,σ) → a(B,σ)(C,σ) with A,B,C ∈ N, a ∈ T and σ ∈ I∗. A production
rule of the form (3b) implements a push onto the stack while a production rule
of the form (3c) encodes a pop off of the stack. For example, the production
rule A→ Bf applied to (A,σ) expands to (B, fσ) where fσ is the stack with the
index f ∈ I pushed on. Likewise, Af → β can only be applied to (A,σ) if the
top of the stack string σ is f. The result is β such that any non-terminal B ∈ β
is of the form (B,σ ′), where σ ′ is the stack with the top character popped off.
Push and Pop productions differ from the original definition given by Aho [2] in
which, by Definition 1, at most one index symbol is loaded or unloaded in any
production.

Let G = (N, T , I,P,S) be an indexed grammar. A derivation in G is a sequence
of strings α1,α2, . . . ,αn with αi ∈ ((N×I∗)∪T)∗, where αi+1 is derived from αi
by the application of one production in P, written αi →G αi+1. The subscript
G is dropped whenever G is clearly understood. Let →∗G be the reflexive and
transitive closure of →G defined as usual: α →0

G α for n > 0, α →n+1
G γ if

∃β : α→nG β and β→G γ; α→∗G β iff α→iG β for some i > 0.
The language L(G) recognized by an indexed grammar G is

L(G) = {w ∈ T∗ | (S, ε)→∗G w} .

We denote with IL the set of indexed languages.
From now on the set of non-terminals N will range on superscript symbols

such as A,B, . . . , the set of terminals T on symbols a,b, c,d, e while indices I on
f,g.

Example 1. The language L = {anbncn | n > 1} is generated by the indexed
grammar G = ({S, T ,A,B,C}, {a,b, c}, {f},P,S), with productions:

S→ T Af → aA Bε → b
T → Tf Aε → a Cf → cC
T → ABC Bf → bB Cε → c

6 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

For example, the word ”aabbcc” can be generated by the following deriva-
tion: (S, ε) → (T , ε) → (T , f) → (A, f)(B, f)(C, f) → a(A, ε)(B, f)(C, f) →
aa(B, f)(C, f)→∗ aabbcc.

Fig. 1. Chomsky hierarchy

REG
a∗b∗

CF

anbn

Indexed

anbncn a2n

{ww |w ∈ {a,b}∗}

{www |w ∈ {a,b}∗}

anbn2
an

CS

(abn)n

{w ∈ {a,b,c}∗ | #a = #b = #c}

an!

Indexed languages are recognized by nested stack automata [3]. A nested
stack automaton is a finite automaton that can make use of a stack containing
data which can be additional stacks. Like a stack automaton, a nested stack
automaton may step up or down in the stack, and read the current symbol; in
addition, it may at any place create a new stack, operate on that one, eventually
destroy it, and continue operating on the old stack. In this way, stacks can be
nested recursively to an arbitrary depth; however, the automaton always operates
on the innermost stack only. For more details on nested stack automata see [3].

As argued above, the class of indexed languages properly includes the one
of CF languages, while being properly included in the one of CS languages.
Fig. 1 represents these different classes and highlights some of the languages
that characterize the different classes [24].

Table 1 reports some decidability and computational complexity properties of
indexed languages and of the others formal languages in the Chomsky hierarchy.
As expected, the decidability results of indexed languages lay in between the
ones of CS and CF languages.

4 Fixpoint Characterization of Indexed Languages

In order to study the existence of abstraction functions between context-sensitive,
indexed and context-free languages we need to provide a fixpoint characteriza-

Abstract Interpretation of Indexed Grammars 7

Table 1. Decidability and complexity results

Class Emptiness Membership Equivalence

Regular P (O(n)) P (O(n)) NL-complete
Context-free P (O(n3)) P (O(n3)) Undecidable
Indexed EXP-complete NP-complete Undecidable
Context-sensitive Undecidable PSPACE-complete Undecidable

tion of indexed languages. The fixpoint characterizations of CF languages, well
known as the ALGOL-like theorem, and CS languages are already constructed
and proved [22, 23].

The fixpoint characterization that we present is mainly derived from the
one of CS languages [23]. Essentially it consists of two elements: a substitution
function that simulates a context-free rule for the pair non-terminal/stack (pro-
ductions of type (3a) and (3b)) and a regular expression to verify the context of
the stack in case of a pop production (3c).

Before showing the theorem, let us give some notations and definitions. Let
V be the set of variables of an indexed grammar: an element of V is either a pair
of non-terminal/stack or a terminal symbol, namely V = (N×I∗)∪T . Therefore,
if α is a sentential form of an indexed grammar, then α ∈ V∗.
Definition 2. An indexed state X is a m-tuple X = (X1, . . . ,Xm) of sets of
sentential forms Xi ∈ ℘(V∗) with i ∈ [1,m].

Thus, the set of possible m-tuples of indexed states is ℘(V∗)× · · · × ℘(V∗)︸ ︷︷ ︸
m

.

Definition 3. A substitution function h is a map h : ℘(V∗)→ ℘(V∗).

Functions h will be defined in the proof of Theorem 1 and will be used to simulate
an application of a CF-like production.

Regular sets over V are denoted by regular expressions R ∈ ℘(V∗) and will
be used to verify the top character of the stack for pop productions.

Definition 4. Given a substitution function h and a regular set R, we define a
pair π = (h,R) called a π-function. A π-function is a map

π : ℘(V∗)× · · · × ℘(V∗)︸ ︷︷ ︸
m

→ ℘(V∗)

defined as follows:

π(X) = h(
⋃
X ∩ R)

where
⋃
X = X1∪· · ·∪Xm is the set corresponding to the union of all components

of the indexed state X. We denote with the bold symbol

π : ℘(V∗)× · · · × ℘(V∗)︸ ︷︷ ︸
m

→ ℘(V∗)× · · · × ℘(V∗)︸ ︷︷ ︸
m

8 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

a vector function of π-functions π = (π1, . . . ,πm) such that

π(X) = (π1(X), . . . ,πm(X)).

As we will see in the proof of theorem 1, a π-function allows us to simulate an
application of an indexed production.

Theorem 1. Let G be an indexed grammar, then L(G) is a component of the
least fixpoint of a system of equations on indexed states:

Xj+1
G = πG(X

j
G) (1)

where X0
G = ({(S, ε)}, ∅, . . . , ∅)︸ ︷︷ ︸

n

is the initial indexed state and the vector function

of π-functions induced by G is πG = (πG,1, . . . ,πG,n).

Proof. The proof considers an indexed grammar G = (N, T , I,P,S) with m pro-
ductions in P. Let [τ]i ∈ P be an enumeration of all productions in P with
i ∈ [1,m], where τ ∈ P could be in one of the three forms of Definition 1. We
build a system of equations having the form (1) where each indexed state XG has
n = m + 2 components: one for each production in P, namely XG,1, . . . ,XG,m

and two additional components XG,0 and XG,t, where t is a variable symbol
denoting the ”terminals” set and it is always at position m + 1 of XG. So the
components of each indexed state are XG = (XG,0,XG,1, . . . ,XG,m,XG,t). The
least fixpoint computation of the so obtained system of equations is calculated by
the iterative application of the vector function πG = (πG,0,πG,1, . . . ,πG,m,πG,t)
associated to the grammar G. The sets from XG,1 to XG,m are associated to the
m productions in P while XG,t contains only terminal symbols and XG,0 ini-
tialize a sentential form. In particular, given the initial indexed state X0

G, the
language is iteratively built in the last element XG,t of XG such that at fixpoint
XFIXG,t = L(G). From now on, the subscript G is dropped whenever it is clearly
understood.

We introduce a barred version of the set of non-terminals N: N̄ = {Ā | A ∈ N}

where Ā is the corresponding ”marked” non-terminal to A. We also extend the
set of variables V in order to contain marked non-terminals: V = (N∪ N̄, I∗)∪T .
Marked non-terminals are the only symbols which can be rewritten by an indexed
production.

In detail, given an indexed grammar G, the vector of π-functions induced
by G is πG = (π0,π1, . . . ,πm,πt). For i ∈ [1,m], we associate the πi-function
πi = (hi,Ri) with the i-th production in the enumeration of P. Each substitution
function hi, with i ∈ [1,m], is defined inductively as follows where α,β ∈ V∗
and σ ∈ I∗:

hi(∅) = ∅
hi({ε}) = {ε}

hi({a}) = {a}, if a ∈ T

Abstract Interpretation of Indexed Grammars 9

hi({(Ā,σ)}) =


{α} if (Ā,σ) ∈ V and [A→ α]i ∈ P (Stack copy rule)
{(B, fσ)} if (Ā,σ) ∈ V and [A→ Bf]i ∈ P (Push rule)
{β} if (Ā,σ) ∈ V and [Af → β]i ∈ P (Pop rule)
{(Ā,σ)} otherwise

hi({αY}) = hi({α})hi({Y}), if α ∈ V+ and Y ∈ V
hi(Q) =

⋃
α∈Q hi({α}), if Q ∈ ℘(V∗), Q 6= ∅ and α 6∈ Q.

Intuitively, the substitution function hi will apply the i-th production to the
marked non-terminal corresponding to the non-terminal of the associated pro-
duction, without checking the stack symbols, i.e. in a context-free way. The other
non-terminals remain untouched.

Given G, each regular expression Ri associated to the i-th production of P,
with i ∈ [1,m], is defined as follows, with f ∈ I and σ ∈ I∗:

Ri =

{
V∗(Ā, fσ)V∗ if [Af → β]i ∈ P (Pop rule)
V∗ otherwise.

Intuitively, if the i-th indexed production Af → β associated to Ri is of type
(3c), then only the sentential forms containing the signed non-terminal Ā and
having f as the top symbol of its stack, will be selected from intersection.

Now an application of πi = (hi,Ri), with i ∈ [1,m], to an indexed state
corresponds to an application of the i-th indexed production.

We define the π-function π0: its role is to mark the leftmost non-terminal
of each sentential form (this marked non-terminal is the one used in the next
iteration). Formally, π0 = (h0,R0) is inductively defined as follows for α ∈ V+:

h0(∅) = ∅
h0({ε}) = {ε}

h0({Yα}) =

Y h0({α}) if Y ∈ T
(Ā,σ) unmark({α}) if Y = (A,σ) and A ∈ N
(A,σ)h0({α}) if Y = (Ā,σ) and Ā ∈ N̄

h0(Q) =
⋃
α∈Q h0({α}), if Q ∈ ℘(V∗), Q 6= ∅ and α 6∈ Q.

and function unmark : ℘(V∗)→ ℘(V∗) differs from h0 in:

unmark({Yα}) =

{
(A,σ) unmark({α}) if Y = (Ā,σ) and Ā ∈ N̄
Y unmark({α}) otherwise.

The regular expression associated to h0 is R0 = V∗. Function h0 marks the
leftmost unmarked non-terminal while it unmarks any previously marked ones.

We define the π-function πt to be applied to the last element of the state X
that collects in Xt all the terminal words. Formally, πt = (ht,Rt) where ht is the
identity function, namely ht = id , and Rt = T∗. This leads us to the following
system of equations where 0 6 i 6 m and j > 1:

X0 = ({(S, ε)}, ∅, . . . , ∅)
Xj+1
t = πt(X

j)

Xj+1
i = πi(X

j)

10 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

Let (S, ε) →n w , with w ∈ T∗ and n > 1, be a derivation of G after
n steps. We can construct a sequence of π-functions that exactly simulate the
derivations in G such that the word w ∈ X2n+1

G,t . Indeed, an application of the
i-th production in P is exactly simulated by an application of two π-functions:
πG,0 to mark the non-terminal used in the production and πG,i to apply the i-th
index production. After 2n steps, an application of the π-function πG,t at step
2n+ 1 yields w ∈ X2n+1

G,t .

Conversely it is straightforward to show by induction on n that, for every
w ∈ T∗, if w ∈ XnG,t, with n > 1, then there exists a derivation in G yielding w

after (n− 1)/2 steps, namely (S, ε)→(n−1)/2 w. This means that XFIXG,t = L(G).

ut

Example 2. Consider the indexed language L = {anbncn | n > 1} and the
indexed grammar G = ({S, T ,A,B,C}, {a,b, c}, {f},P,S) generating it presented
in Example 1. Let the productions in P be enumerated as follow:

[S→ T]1 [Af → aA]4 [Bε → b]7
[T → Tf]2 [Aε → a]5 [Cf → cC]8
[T → ABC]3 [Bf → bB]6 [Cε → c]9

We denote a substitution as a list of replacements, e.g. {(S̄,σ)→ (T ,σ)} denotes
the substitution h1 defined by h1({(S̄,σ)}) = {(T ,σ)} and identity otherwise.
Following Theorem 1, the fixpoint characterization of the indexed grammar of
Example 1 is:

Xj+1
0 = π0(h0,R0) = h0(V

∗ ∩
⋃
Xj)

Xj+1
1 = π1(h1,R1) = {(S̄,σ)→ (T ,σ)}(V∗ ∩

⋃
Xj)

Xj+1
2 = π2(h2,R2) = {(T̄ ,σ)→ (T , fσ)}(V∗ ∩

⋃
Xj)

Xj+1
3 = π3(h3,R3) = {(T̄ ,σ)→ (A,σ)(B,σ)(C,σ)}(V∗ ∩

⋃
Xj)

Xj+1
4 = π4(h4,R4) = {(Ā, fσ)→ a(A,σ)}(V∗(Ā, fσ)V∗ ∩

⋃
Xj)

Xj+1
5 = π5(h5,R5) = {(Ā, ε)→ a}(V∗(Ā, ε)V∗ ∩

⋃
Xj)

Xj+1
6 = π6(h6,R6) = {(B̄, fσ)→ b(B,σ)}(V∗(B̄, fσ)V∗ ∩

⋃
Xj)

Xj+1
7 = π7(h7,R7) = {(B̄, ε)→ b}(V∗(B̄, ε)V∗ ∩

⋃
Xj)

Xj+1
8 = π8(h8,R8) = {(C̄, fσ)→ c(C,σ)}(V∗(C̄, fσ)V∗ ∩

⋃
Xj)

Xj+1
9 = π9(h9,R9) = {(C̄, ε)→ c}(V∗(C̄, ε)V∗ ∩

⋃
Xj)

Xj+1
t = πt(ht,Rt) = (T∗ ∩

⋃
Xj)

where σ ∈ I∗, X0 = ({(S, ε)}, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅) and the union of all com-

ponents is given by
⋃
Xj =

⋃
{Xjy | y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t}}. We have

XFIXt = L(G) = {anbncn | n > 1}.

For example, the word ”aabbcc” can be generated in Xt, after 19 steps, by
the following derivation:

aabbcc ∈ πtπ9π0π8π0π7π0π6π0π5π0π4π0π3π0π2π0π1π0(X0)

Abstract Interpretation of Indexed Grammars 11

5 Abstract Indexed Grammars

We want to investigate if the relation that exists between regular, CF, indexed
and CS languages can be expressed as GIs, namely if less expressive languages
can be seen as abstractions of more expressive ones.

Given a finite set of alphabet symbols Σ, we consider the complete lattice
of all possible languages on Σ, namely 〈℘(Σ∗),⊆,∪,∩,Σ∗, ∅〉. Suppose that we
want to model the relation between Indexed and CF languages as a GI. This
means that we want to abstract an indexed language into the best (w.r.t. set
inclusion) CF language that includes it. However, this is not possible since CF
languages are not closed under intersection, and therefore the abstract domain
of CF languages 〈CF ,⊆〉 is not a Moore family. The same holds when analyzing
the relation between CS and indexed languages, and the one between CF and
regular languages: the families of indexed languages and of regular languages do
not form a Moore family of 〈℘(Σ∗),⊆〉, as shown in the following three examples.

Example 3. Consider the following family of languages: ∀i > 0 : Li = {aibi}.
Each set Li is a regular language since its complement language Li is a finite set
and regular languages are closed under complement operation, this means that
∀i > 0 : Li ∈ REG . Taking the intersection of all Li, namely L =

⋂∞
i=0 Li, we

get L = {anbn | n > 0} where the w is the complement operation. L ∈ CF since
it can be created from the union of several simpler languages:

L = {aibj | i > j} ∪ {aibj | i < j} ∪ (a ∪ b)∗b(a ∪ b)∗a(a ∪ b)∗

that is, all strings of as followed by bs in which the number of as and bs differ,
joined with all strings not of the form aibj. The language {aibj | i > j} ∈ CF and
a CF grammar generating it is S → aSb | aS | a similarly {aibj | i < j} ∈ CF ,
while (a∪b)∗b(a∪b)∗a(a∪b)∗ ∈ REG since it is a regular expression. Observe
that we have obtained a CF language from an (infinite) intersection of regular
languages.

Example 4. Consider the following two CF languages and their corresponding
CF grammars:

L1 = {anbncm | n,m > 0} L2 = {anbmcm | n,m > 0}

S→ AC S→ AB
A→ aAb | ε A→ aA | ε
C→ cC | ε B→ bBc | ε

Note that L1 ∩ L2 = L = {anbncn | n > 0} and L is an indexed language but not
CF, namely L ∈ IL \ CF .

Example 5. Consider the following indexed languages L1 = {w ∈ {a,b, c}∗ |

#a = #b} and L2 = {w ∈ {a,b, c}∗ | #b = #c} where #a means the number of
symbols a in a word. L1 can be generated by the following CF grammar:

S→ SS S→ aSb S→ bSa S→ c S→ ε

12 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

and similarly for L2. Consider the language

L = L1 ∩ L2 = {w ∈ {a,b, c}∗ | #a = #b = #c}.

L ∈ CS but L 6∈ IL. A CS grammar generating L is:

S→ ABC AB→ BA BC→ CB CA→ AC A→ a C→ c
S→ ABCS AC→ CA BA→ AB CB→ BC B→ b

Observe that we have obtained a CS language from an intersection of two indexed
languages.

The examples above show that it is not possible to specify GIs between the
domains of languages in the Chiomsky hierarchy. However, this does not exclude
the possibility of approximating the fixpoint semantics of indexed grammars by
acting on the productions of the grammars. This corresponds to constraining the
structures of productions or the way the memory (stack) of the productions of in-
dexed grammars are used, by acting on the indexed states of the equational char-
acterization associated. We provide abstractions of indexed grammars, namely
of the mechanism used to generate the indexed languages, with the aim of trans-
forming an indexed language into a more abstract (namely a less expressive)
language in Chomsky’s hierarchy, such as CF or REG languages. We start in
section 5.1 with a simple abstraction, stack elimination, which eliminates com-
pletely the stack of all non-terminals. Then, with the purpose of refining the
abstraction, we present two other abstractions: stack limitation (section 5.2),
which limits the stack capacity, and stack copy limitation (section 5.3), which
limits stack copy productions.

5.1 Stack Elimination

Definition 5. Stack elimination removes the stack of each non-terminal in a
sentential form of an indexed grammar. Namely, given a sentential form α, each
pair (A,σ) ∈ α, with A ∈ N and σ ∈ I∗, is replaced by (A, I∗).

The idea of stack elimination is to abstract away from the stack, namely, to
abstract the stack to top in the sentential form. In the concrete domain, the
abstract value top of the stack precisely corresponds to the set of all possible
stacks. In other words, this corresponds to have a set of sentential forms one for
each possible stack value. A major consequence of applying stack elimination is
that the three kinds of indexed productions (stack copy, push and pop) in an
indexed grammar are turned into a single context-free production.

We want to demonstrate that stack elimination is a sound abstraction of
indexed grammars. In the following we denote with ΦG the domain ℘(V∗)m

of possible indexed states of an indexed grammar G = (N, T , I,P,S) with m
productions in P, used in the fixpoint characterization of Theorem 1. It is possible
to define a function on the concrete domain 〈ΦG,v〉 that iteratively computes

Abstract Interpretation of Indexed Grammars 13

the language of an indexed grammar G. The partial order v over ΦG is defined
as follows:

∀X,Y ∈ ΦG : X v Y ⇐⇒ proj-1(X) ⊆ proj-1(Y)

The transition relation between two indexed states Xi,Xi+1 ∈ ΦG corresponds
to the application of the vector function πG : ΦG → ΦG, namely Xi+1 = πG(X

i).
We formalize the abstract domain as a closure ρE : ΦG → ΦG on 〈ΦG,v〉,

as follows:

ρE(X) = (ρE(X1), . . . , ρE(Xm))

and, with a slight abuse of notation, ρE(Xi) = {ρE(si) | si ∈ Xi} where for
si = λi1 . . . λiw with λij ∈ V we have:

ρE(λi1)ρ
E(λi2 . . . λiw) =

{
(A, I∗) if λi1 = (A,σ)
λi1 otherwise.

Intuitively, the stack of all non-terminal symbols is set to I∗. This means that
there is no restrictions on the symbol on the top of the stack when performing
a pop operation, turning push and pop productions to stack copy productions.

Lemma 1. The function ρE on domain 〈ΦG,v〉 is an upper closure operator.
Moreover, we have that lfpv πG(X

0) = ρE ◦ lfpv πG(X0) while lfpv πG(X
0) v

lfpv πG(ρ
E(X0)).

Lemma 2. Let G̃ be the indexed grammar obtained by stack elimination from
an indexed grammar G, then lfpv π

G̃
(X0) = lfpv πG(ρ

E(X0)).

This allows us to prove the soundness of the abstraction showing that any
language obtained by stack elimination from an indexed grammar is an over
approximation of its original indexed language:

Theorem 2. Let G̃ be the indexed grammar obtained by stack elimination from
the indexed grammar G, then L(G) ⊆ L(G̃).

The loss of precision is due to the fact that, when eliminating the stack, an
indexed grammar can no longer count or store occurrences of an index symbol,
thus it is reduced to a CF grammar. Moreover, it turns out that if the original
indexed grammar G is such that L(G) ∈ IL but L(G) 6∈ CF then L(G̃) is a CF
language but not indexed.

Corollary 1. Let G̃ be the indexed grammar obtained from G by stack elimina-
tion such that L(G) ∈ IL \ CF , then L(G̃) 6∈ IL \ CF .

Example 6. The language L = {anbncn | n > 1} in Example 1 is an indexed
language but not CF, namely L ∈ IL \ CF . If we apply stack elimination as

described above, we obtain a new language L(G̃) generated by the new grammar

G̃ with the following productions:

14 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

S→ T A→ aA B→ b
T → T A→ a C→ cC
T → ABC B→ bB C→ c

The language generated from G̃ is L(G̃) = {a∗b∗c∗} and it is a regular language,

L(G̃) ∈ REG.

Although some examples may be deceiving, in general it is not true that any
indexed languages become regular by stack elimination. Indeed, indexed gram-
mars could contain context-free characteristic rules that do not affect stacks and
so, after stack elimination, still remain, turning the language to a CF language
and not regular. The following is an example of such an indexed grammar.

Example 7. The language L = {anbncn | n > 1} could be generated also by the
following indexed grammar:

S→ aSfc Tf → Tb
S→ T Tε → ε

If we apply stack elimination, we obtain the language L̃ = {anb∗cn | n > 1}.

Note that L ⊆ L̃ and L̃ ∈ CF but L̃ 6∈ REG .

It is indeed obvious to observe that stack elimination produces precisely the
class of CF languages.

Corollary 2. For any CF grammar G̃ there exists an indexed grammar G such
that: lfpv π

G̃
(X0) = lfpv πG(ρ

E(X0)).

5.2 Stack Limitation

Definition 6. Stack limitation limits the numbers of symbols on the stack of
each non-terminal by a constant k > 0. This means that each stack can contain
at most k symbols and all others k + 1 symbols pushed on to the stack will be
discarded.

We want to demonstrate that stack limitation is a sound abstraction of in-
dexed grammars. As in the previous section, we operate on the concrete domain
〈ΦG,v〉. We formalize the abstract domain as an upper closure operator ρLk,
with k > 0, on the concrete domain 〈ΦG,v〉. We define ρLk : ΦG → ΦG:

ρLk(X) = (ρLk(X1), . . . , ρLk(Xm))

and, with a slight abuse of notation, ρLk(Xi) = {ρLk(si) | si ∈ Xi} where for
si = λi1 . . . λiw with λij ∈ V we have:

ρLk(λi1)ρ
L
k(λi2 . . . λiw) =

{
(A, σ̂) if λi1 = (A,σ) and |σ| > k
λi1 otherwise.

where |σ| = z if σ = qz . . .qk+1qk . . .q1 and |ε| = 0 with σ ∈ I∗, and for
1 6 i 6 z, qi ∈ I, qz top symbol and σ̂ = qk . . .q1. Intuitively, by function ρLk,
the stack of each non-terminal is limited to k symbols and each additional push
of others symbols will be discarded. Observe that this technique corresponds to
limiting push productions only.

Abstract Interpretation of Indexed Grammars 15

Lemma 3. The function ρLk on the domain 〈ΦG,v〉 is an upper closure opera-
tor. Moreover, lfpv πG(X

0) = ρLk ◦ lfpv πG(X0).

Lemma 4. Let G̃k be the indexed grammar obtained by stack limitation with the
constant k from an indexed grammar G, then lfpv π

G̃k
(X0) = lfpv πG(ρ

L
k(X

0)).

In the following theorem we prove that stack limitation, as defined by function
ρLk, is not sound, namely, at fixpoint, the language generated is not always an
over approximation of the original concrete language.

Theorem 3. lfpv πG(X
0) 6v lfpv πG(ρLk(X0)).

Proof. The proof is made by providing a counterexample. The language L =
{anbncn | n > 1} in Example 1 has only one push production: T → Tf. Therefore,
after stack limitation, each stack can contain at most k index symbols of f and
the following family of languages is generated:

∀k > 0 , Lk = {anbncn | 1 6 n 6 k+ 1}

For all k > 0, the language Lk is a regular language since each family contains
a finite number of words: for k = 0 then {abc}, k = 1 then {abc,aabbcc},
Moreover, each Lk is not an over approximation of the original language since
L 6⊆ Lk, this leads to lfpv πG(X

0) 6v lfpv πG(ρLk(X0)).
ut

Observe that the infinite intersection of all family of languages Lk obtained
by stack limitation from a language L, corresponds to L0, namely

⋂∞
k=0 Lk = L0,

while the infinite union of all Lk is a superset of the original language L, namely
L ⊆

⋃∞
k=0 Lk.

At first glance, the family of languages generated from a language non-stack-
limited is regular, as the previous example showed but, in general, this is not
always true: the next example shows a counterexample, similar to Example 7:

Example 8. The language L = {anbncn | n > 1} could be generated also by the
following indexed grammar:

S→ aSfc Tf → Tb
S→ T Tε → ε

If we apply stack limitation we get the following family of languages:

∀k > 1 , Lk = {anbmcn | n > 1 ∧ m 6 k}

Note that ∀k > 1 Lk ∈ CF while for k = 0 L0 = {ε} the empty word ε is not
accepted by L.

We can force the soundness of stack limitation abstraction by modifying the
upper closure operator ρLk as follows, obtaining the new uco ρLEk :

ρLEk (X) = · · · = ρLEk (λij) =

{
(A, I∗) if λi1 = (A,σ) and |σ| > k or k = 0

λi1 otherwise.

Intuitively, ρLEk eliminates completely the stack of a non-terminal if and only if
k = 0 or the size of the stack exceeds the parameter k.

16 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

Lemma 5. lfpv πG(X
0) v lfpv πG(ρLEk (X0)).

By Lemma 5 and by substituting ρLk with the new uco ρLEk in Lemma 3 and
Lemma 4, we can prove the soundness of this new abstraction.

Theorem 4. Let G̃k be the indexed grammar obtained by stack limitation with
the constant k from an indexed grammar G, then L(G) ⊆ L(G̃k).

5.3 Stack Copy Limitation

Definition 7. Stack copy limitation limits the copy of the stack, from the right-
side of a production, to a finite number of non-terminals symbols in a given set
H. The contents of the other stacks are set to I∗ meaning that you can do push
and pop operations with no limits as in section 5.1.

As before, we want to demonstrate that stack copy limitation is a sound abstrac-
tion of indexed grammars. As in the previous sections, we formalize the abstract
domain as an upper closure operator ρCH on the concrete domain 〈ΦG,v〉 with
H ⊆ N where N is the set of non-terminals of the indexed grammar. We define
ρCH : ΦG → ΦG as:

ρCH(X) = (ρCH(X1), . . . , ρCH(Xm))

and, with a slight abuse of notation, ρCH(Xi) = {ρCH(si) | si ∈ Xi} where for
si = λi1 . . . λiw with λij ∈ V we have:

ρCH(λi1)ρ
C
H(λi2 . . . λiw) =

{
(A, I∗) if λi1 = (A,σ) and A 6∈ H
λi1 otherwise.

Intuitively, the function ρCH eliminates the stack of only a restricted set of non-
terminals, namely those not in the set H, while for all non-terminals in H the
stack will be copied and so all the indices symbols on it still remain. Observe
that if H = N then ρCH = id where id is the identity function, while if H = ∅
then ρCH = ρE where ρE is the stack elimination technique presented in 5.1.

Lemma 6. The function ρCH on the domain 〈ΦG,v〉 is an uco. Moreover, we
have lfpv πG(X

0) = ρCH ◦ lfpv πG(X0) while lfpv πG(X
0) v lfpv πG(ρCH(X0)).

Lemma 7. Let G̃H be the indexed grammar obtained by stack copy limitation
from an indexed grammar G, with H ⊆ N where N is the set of non-terminals
of G, then lfpv π

G̃H
(X0) = lfpv πG(ρ

C
H(X

0)).

The following theorem asserts the soundness of the abstraction by showing
that any language obtained by stack copy limitation from an indexed grammar
is an over approximation of its original indexed language:

Theorem 5. Let G̃H be the indexed grammar obtained by stack copy limitation
of a subset of non-terminals H from an indexed grammar G, then L(G) ⊆ L(G̃H).

Abstract Interpretation of Indexed Grammars 17

As expected, the quality of this abstraction, in terms of classification in the
Chomsky hierarchy, may be better then stack elimination, depending on which
non-terminals form the set H ⊆ N.

Example 9. Consider the language L = {anbncn | n > 1} in Example 1 and

let H = {A}, then by stack copy limitation we obtain: L̃ = {anb∗c∗ | n > 1}.

Observe that L̃ ∈ REG and L ⊆ L̃, indeed, if H contains one of the three non-
terminals then stack copy limitation is equivalent to stack elimination. However,
if H = {A,B}, then by stack copy limitation we obtain L̃′ = {anbnc∗ | n > 1}.

Note that L ⊆ L̃′ ⊆ L̃, L̃′ ∈ CF and L̃′ 6∈ REG .

We conclude by showing in Fig. 5.3 the three sound abstractions presented
in this section applied to Example 6.

Fig. 2. Sound abstractions of indexed grammars presented in section 5 and applied to
Example 6

a∗b∗c∗

REG

CFIndexed

anbncn

anbnc∗

ρ
E ,ρ

LE ,ρ
Cρ

C

ρC

6 Related and Future Works

The approximation of grammar structures by abstract interpretation is not new.
In [13] and [15] the authors introduced the idea of abstracting formal languages
by abstract interpretation for the design of static analysers that manipulate sym-
bolic structures. This provided both the source for new symbolic abstract do-
mains for program analysis and the possibility of formalising known algorithms,
such as parsers, as abstract interpreters. Abstractions into regular languages have
been used in formal verification (e.g., see [7]). In program analysis non-regular
approximations of formal languages have been used in aliasing analysis [19]. The
idea of grammar abstraction as a relation between CF grammars has been also
used for relating concrete and abstract syntax in [4]. We exploit this latter line
of research by establishing a relation, formalised here by abstract interpretation,
between indexed grammars with the aim of relating languages in Chomsky’s
hierarchy [6].

18 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

None of the above mentioned approaches considered the more general prob-
lem of correlating languages in Chomsky’s hierarchy by the theory of fixpoint
abstraction by abstract interpretation. We believe that a systematic reconstruc-
tion of Chomsky’s hierarchy by fixpoint abstract interpretation may provide both
new insights into a fundamental field of computer science and new algorithms
and methods for approximating structures described by grammars. Indeed, the
current work originated from the desire of finding suitable abstract domains for
expressing the invariant properties among obfuscated malware variants [17, 18].
We reformulated the Chomsky’s hierarchy by using the standard abstract in-
terpretation methods: we provided a fixpoint semantics for indexed languages
and we characterised classes of less expressive languages in terms of fixpoint
abstractions of this semantics. In our case, the approximation of indexed lan-
guages shows how it is possible to systematically and constructively derive all
fixpoint descriptions for CF languages as abstract interpretations. In particular,
we proved that a calculational design, in the style of [8], of these fixpoint repre-
sentation for CF languages is possible, and how new families of languages can
be derived in this form. As future work we plan to generalize known separation
results between classes of languages, e.g., the Pumping Lemmata, as instances
of incompleteness of language abstractions. The idea is that, if a family of lan-
guages corresponds to a suitable abstraction of the fixpoint semantics of a more
concrete family of languages–in our case indexed languages, then languages not
expressible in one family should correspond to witnesses of the incompleteness of
this abstraction [21]. The interest in this perspective over Chomsky’s hierarchy
is in the fact that we can reformulate most of this hierarchy, including sepa-
ration results, in terms of abstract interpretation, providing powerful tools for
comparing symbolic abstract domains with respect to their expressive power.

References

1. Adams, J., Freden, E., Mishna, M.: From indexed grammars to generating func-
tions. RAIRO-Theoretical Informatics and Applications 47(4), 325–350 (2013)

2. Aho, A.V.: Indexed grammars – an extension of context-free grammars. Journal of
the ACM 15(4), 647–671 (1968)

3. Aho, A.V.: Nested stack automata. Journal of the ACM 16(3), 383–406 (Jul 1969)

4. Ballance, R.A., Butcher, J., Graham, S.L.: Grammatical abstraction and incre-
mental syntax analysis in a language-based editor. In: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementa-
tion. pp. 185–198. PLDI ’88, ACM, New York, NY, USA (1988)

5. Bertsch, E.: On the relationship between indexed grammars and logic programs.
The Journal of Logic Programming 18(1), 81–98 (1994)

6. Chomsky, N.: On certain formal properties of grammars. Information and Control
2(2), 137–167 (June 1959)

7. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997)

8. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design, vol. 173, pp. 421–505. NATO

Abstract Interpretation of Indexed Grammars 19

Science Series, Series F: Computer and Systems Sciences. IOS Press, Amsterdam
(1999)

9. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the 4th ACM Symposium on Principles of Programming Languages
(POPL ’77). pp. 238–252. ACM Press (1977)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conference Record of the 6th ACM Symposium on Principles of Programming
Languages (POPL ’79). pp. 269–282. ACM Press (1979)

12. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic and Comput.
2(4), 511–547 (1992)

13. Cousot, P., Cousot, R.: Compositional and inductive semantic definitions in fix-
point, equational, constraint, closure-condition, rule-based and game-theoretic
form (Invited Paper). In: Wolper, P. (ed.) Proc. of the 7th Internat. Conf. on Com-
puter Aided Verification (CAV ’95). Lecture Notes in Computer Science, vol. 939,
pp. 293–308. Springer-Verlag (1995)

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. pp. 84–96. ACM Press (1978)

15. Cousot, P., Cousot, R.: Grammar semantics, analysis and parsing by abstract in-
terpretation. Theor. Comput. Sci. 412(44), 6135–6192 (2011)

16. Cousot, P., Cousot, R.: Abstract interpretation: past, present and future. In: Hen-
zinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
Vienna, Austria, July 14 - 18, 2014. pp. 2:1–2:10. ACM (2014)

17. Dalla Preda, M., Giacobazzi, R., Debray, S.K., Coogan, K., Townsend, G.M.: Mod-
elling metamorphism by abstract interpretation. In: Proc. of the 19th Int. Static
Analysis Symp. (SAS ’10). Lecture Notes in Computer Science, vol. 6337, pp.
218–235. Springer-Verlag, Berlin (2010)

18. Dalla Preda, M., Giacobazzi, R., Debray, S.K.: Unveiling metamorphism by ab-
stract interpretation of code properties. Theor. Comput. Sci. 577, 74–97 (2015)

19. Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting.
SIGPLAN Not. 29(6), 230–241 (Jun 1994)

20. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Natural
language parsing and linguistic theories, pp. 69–94. Springer (1988)

21. Giacobazzi, R., Ranzato, F., Scozzari., F.: Making abstract interpretation com-
plete. Journal of the ACM 47(2), 361–416 (March 2000)

22. Ginsburg, S.: The Mathematical Theory of Context Free Languages. McGraw-Hill
Book Company (1966)

23. Istrail, S.: Generalization of the Ginsburg-Rice Schützenberger fixed-point theorem
for context-sensitive and recursive-enumerable languages. Theoretical Computer
Science 18(3), 333–341 (1982)

24. Partee, B.B., ter Meulen, A.G., Wall, R.: Mathematical methods in linguistics,
vol. 30. Springer Science & Business Media (2012)

