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It is widely known that the precision of a program analyzer is closely related to intensional program properties,

namely, properties concerning how the program is written. This explains, for instance, the interest in code

obfuscation techniques, namely, tools explicitly designed to degrade the results of program analysis by

operating syntactic program transformations. Less is known about a possible relation between what the

program extensionally computes, namely, its input-output relation, and the precision of a program analyzer. In

this paper we explore this potential connection in an effort to isolate program fragments that can be precisely

analyzed by abstract interpretation, namely, programs for which there exists a complete abstract interpretation.

In the field of static inference of numeric invariants, this happens for programs, or parts of programs, that

manifest a monotone (either non-decreasing or non-increasing) behavior. We first formalize the notion of

program monotonicity with respect to a given input and a set of numerical variables of interest. A sound

proof system is then introduced with judgments specifying whether a program is monotone relatively to a set

of variables and a set of inputs. The interest in monotonicity is justified because we prove that the family of

monotone programs admits a complete abstract interpretation over a specific class of non-trivial numerical

abstractions and inputs. This class includes all non-relational abstract domains that refine interval analysis

(i.e., at least as precise as the intervals abstraction) and that satisfy a topological convexity hypothesis.
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1 INTRODUCTION
Static program analysis has been widely investigated and used to help programmers and software

engineers in producing reliable code [Distefano et al. 2019; O’Hearn 2018; Rival and Yi 2020;

Sadowski et al. 2018]. Static analysis relies on symbolic reasoning and over-approximation to reason

on program behaviors and to verify correctness specifications, also known as safety properties,

without actually executing the programs. For instance, common safety specifications are: “Variable

𝑥 is not negative" or “Variable 𝑦 ranges in the interval [𝑎, 𝑏]". Given a program 𝑃 , a correctness
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specification Spec and a set of inputs 𝑆 , a static analyzer either proves that the execution of 𝑃 on 𝑆

satisfies Spec, also written J𝑃K𝑆 ⊆ Spec, or it raises some alarms.

Abstract interpretation [Cousot and Cousot 1977, 1979, 1992, 2014] generalizes most existing static

analysis methods into a unique sound-by-construction framework based on a simple but striking

idea that extracting properties of programs’ execution means over-approximating their semantics.

Given an abstract domain A representing the properties of interest ordered by a partial order

≤A , we denote with 𝛼A and 𝛾A respectively the abstraction and concretization maps associated

with A, and with J·KA an abstract interpreter defined on A and computing the abstract semantics

of a program. Let us assume that Spec is expressible in A, namely Spec = 𝛾A (𝛼A (𝑆𝑝𝑒𝑐)). In
this case, the abstract interpreter is sound when J𝑃KA𝛼A (𝑆) ≤A 𝛼A (Spec) implies J𝑃K𝑆 ⊆ Spec.
However, due to the spurious elements introduced by the abstract interpreter, it may happen that

J𝑃KA𝛼A (𝑆) ≰A 𝛼A (Spec) even if J𝑃K𝑆 ⊆ Spec. In this case the elements in 𝛾A (J𝑃KA𝛼A (𝑆))∖Spec
are called false-alarms. We have completeness when no false-alarms are raised when verifying

Spec: in this optimal case, proving J𝑃K𝑆 ⊆ Spec by executing the program is the same as checking

whether J𝑃KA𝛼A (𝑆) ≤A 𝛼A (Spec) holds, namely, J𝑃K𝑆 ⊆ Spec ⇔ J𝑃KA𝛼A (𝑆) ≤A 𝛼A (Spec).
Completeness represents an ideal and rare situation where there is no loss of precision between

the abstract and concrete interpretation up to the abstraction chosen, and therefore the analysis is

precise. Previous works have investigated the features of abstract domains and of programs under

analysis that make an abstract interpreter complete.

It has been proved that completeness is possible only if the Best Correct Approximation (BCA)

J·K𝛼A
def
= 𝛼A ◦ J𝑃K ◦ 𝛾A of the concrete semantics of 𝑃 on A is complete [Cousot and Cousot 1977;

Giacobazzi et al. 2000]. This means that, given a program 𝑃 , completeness is a domain property

and domain refinements have been proposed in order to minimally transform abstraction A to

gain completeness with respect to 𝑃 [Bruni et al. 2022; Giacobazzi et al. 2000]. Observe that the

BCA relies on the concrete program semantics and, in general, it may not be directly used to

implement an abstract interpreter, therefore further abstractions are needed. This means that the

BCA J·K𝛼A is more precise than any other abstract interpreter J·KA on A. Thus, the BCA represents

the mathematical limit on the best precision that we can reach in abstract interpretation.

Furthermore, it has been shown that the completeness of an abstract interpreter with respect to a

program 𝑃 is strictly influenced by the way 𝑃 is written, namely, precision in abstract interpretation

is an intensional program property [Bruni et al. 2020, 2021; Giacobazzi et al. 2015]. This is not

hard to observe, in fact it is well known that code obfuscation [Collberg and Nagra 2009] refers to

syntactic program transformations explicitly designed to degrade the results of program analysis,

namely to induce imprecision, and therefore incompleteness [Dalla Preda and Giacobazzi 2005;

Dalla Preda et al. 2006; Giacobazzi 2008; Giacobazzi and Mastroeni 2012; Giacobazzi et al. 2017].

In this paper we investigate the class of programs that can be precisely analyzed, namely, admitting

a complete abstract interpretation, over a specific family of non-trivial abstract domains and inputs.

We focus our study on the analysis of numeric properties of program variables, thus considering

numerical abstract domains. Exploring the possibility for programs to be precisely analyzed means

that we need to refer directly to the BCA ofA and not to a generic (less precise) abstract interpreter.

This turns the focus on the concrete semantics of the program, from which the BCA derives. Note

that the program equivalence induced by the BCA on an abstract domainA, namely 𝑃 is equivalent

to 𝑄 if and only if J𝑃K𝛼A = J𝑄K𝛼A , is an extensional equivalence, namely a property related to what

a program computes and not to how it is written.

The Intuition. There are programs whose extensional behavior, namely their input-output

relation, guarantees the existence of a complete abstract interpretation on a given abstract domain,

whereas others deny this possibility as witnessed by the following examples. Consider the simple

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 55. Publication date: January 2024.



Monotonicity and the Precision of Program Analysis 55:3

rectifier program

ReLU

def
= if 𝑥 ≤ 0 then 𝑥 := 0 else 𝑥 := 𝑥

also known as ReLU in artificial neural networks [Nair and Hinton 2010], that filters the input below

0. Consider the abstract domain of intervals Int, where sets of integers 𝑆 ⊆ Z are abstracted by their

bounds, i.e., the least interval 𝛼Int (𝑆) = [𝑙, 𝑢] such that 𝑆 ⊆ [𝑙, 𝑢], where 𝑙 ∈ Z∪{−∞},𝑢 ∈ Z∪{+∞},
and 𝑙 ≤ 𝑢. ReLU can be soundly analyzed by the abstract interpreter JReLUKInt ( [𝑙, 𝑢]) = [𝑙 ′, 𝑢′]
where 𝑙 ′ = 0 if 𝑙 ≤ 0 and 𝑙 ′ = 𝑙 otherwise, and 𝑢′ = 0 if 𝑢 ≤ 0 and 𝑢′ = 𝑢 otherwise. No matter what

set of numbers 𝑆 ⊆ Z is given in input, JReLUKInt is complete: 𝛼Int (JReLUK𝑆) = JReLUKInt𝛼Int (𝑆).
This means that the bounds computed by ReLU on 𝑆 are not altered if we run JReLUKInt on intervals.

Thus, if ReLU is used as divisor in an expression 𝑒 = 𝑓 (𝑥)/ReLU(𝑥), then checking division by 0 is

possible without false-alarms: 0 ∈ 𝛼Int (JReLUK𝑆) ⇔ 0 ∈ JReLUKInt𝛼Int (𝑆). In this case JReLUKInt
corresponds to the BCA JReLUK𝛼Int.

This is not the case for the program

ABS

def
= if 𝑥 ≥ 0 then 𝑥 := 𝑥 else 𝑥 := −𝑥

computing the absolute value of 𝑥 . In this case, even the BCA on Int may report a false-alarm

for 𝑒 = 𝑓 (𝑥)/ABS(𝑥). For instance, with 𝑆 = {−7, 7}, we have: 𝛼Int (JABSK{−7, 7}) = [7, 7], while
JABSK𝛼Int𝛼Int ({−7, 7}) = [0, 7] and [7, 7] <Int [0, 7]. Hence, even if 0 ∉ 𝛼Int (JABSK𝑆), interval
analysis may return a potential false-alarm for 𝑒 , namely 0 ∈ JABSK𝛼Int𝛼Int (𝑆). Consequently, any
sound approximation JABSKInt of JABSK𝛼Int produces intervals larger than [0, 7]. However, when
all the inputs in 𝑆 have the same sign, no matter if positive or negative, completeness of JABSK𝛼Int
holds. For example, with 𝑆1 = {1, 3, 6} and 𝑆2 = {−2,−5} we get

𝛼Int (JABSK𝑆1) = [1, 6] = JABSK𝛼Int𝛼Int (𝑆1)
𝛼Int (JABSK𝑆2) = [2, 5] = JABSK𝛼Int𝛼Int (𝑆2)

Observe that in these latter cases ABS is monotone on the considered input, decreasing if negative

(e.g., on 𝑆2) or increasing if positive (e.g., on 𝑆1), while ReLU is always monotone (specifically

non-decreasing) on all inputs.

Few questions naturally arise from these two examples: Is there a relation between the monotonicity
of programs and the completeness of the analysis on an abstract domain and input? If yes, is there a
way to locate program fragments that behave monotonically for a given set of inputs?

Main Contribution. In this paper we formalize and study two central notions: the notion

of monotone program, adapting the standard mathematical notion of monotonicity to programs,

and the notion of complete-analyzability, identifying all programs admitting a complete abstract

interpretation on a given abstract domain and set of inputs. Our contribution is twofold: (1) we define

a proof system able to soundly verify whether a set of program variables behaves monotonically,

namely either non-decreasing or non-increasing, in the portion of program under inspection and on

the given set of inputs; (2) we establish a relation between program monotonicity and the complete-

analyzability property: the monotonicity of a program is a sufficient condition that guarantees

the possibility of designing a precise abstract interpretation for it, over a specific collection of

numerical abstractions and inputs.

After introducing some basic mathematical notions, a simple imperative language and some

background on abstract interpretation (Section 2), we start with Section 3 by providing a formal

definition of program monotonicity (either non-increasing or non-decreasing) with respect to a

set of numerical variables and inputs of interest. Then, we present a proof system designed to

verify whether a program is non-decreasing with regard to a specific set of variables and a set
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of inputs. The proof judgments have the form 𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ) meaning that program 𝑃 is non-

decreasing on the set of inputs 𝑆 with respect to variables in 𝑉 (the judgments𝑀𝑜𝑛↘ (𝑃, 𝑆,𝑉 ) for
the non-increasing case follow by duality). Our proof system is sound, meaning that all derived

monotonicity judgments correspond to effectivelymonotone code. Similar to the analysis of program

continuity [Chaudhuri et al. 2010] and differentiability [Beck and Fischer 1994], the major challenge

in proving monotonicity arises from branches, namely conditional statements if 𝑏 then 𝑃1 else 𝑃2
and loops while 𝑏 do 𝑃 . Our idea is to restrict the analysis to the Boolean guards 𝑏 made by only

predicates of the form 𝑒 ≤ 0 where expression 𝑒 is positive linear, i.e., 𝑒 has the form
∑ |Var (𝑒 ) |

𝑖=1
𝑣𝑖𝑥𝑖 +𝑘

where 𝑥𝑖 is a program variable, 𝑣 ∈ R≥0, 𝑘 ∈ R and |Var (𝑒) | represents the number of variables

occurring in 𝑒 . In this scenario, for the if-statements, whenever the two branches 𝑃1 and 𝑃2 are

proved non-decreasing, it is sufficient to check the non-decreasing property on boundary states,
i.e., those states that satisfy the equation 𝑒 = 0 for the predicates 𝑒 ≤ 0 occurring in 𝑏. A similar

reasoning is applied when Boolean guards 𝑏 are composed by only predicates in the form 𝑒 ≥ 0.

For example, ReLU is non-decreasing on variable 𝑥 at any input as the branches 𝑥 := 0 and 𝑥 := 𝑥

are non-decreasing, and the order is preserved on the boundary state 𝑥 = 0 after the execution of

both branches: J𝑥 := 0K(0) ≤ J𝑥 := 𝑥K(0). This idea resembles the continuity check on if-statements

presented in [Chaudhuri et al. 2010] where boundary states are checked to preserve the same values

after the execution of each branch whereas, for the non-decreasing case, we check that the order

is preserved. A similar approach is employed for loops, where the notion of boundary states is

refined giving rise to the notion of limit states.
In Section 4 we investigate the relation between monotonicity and complete-analyzability. In

particular, when a program 𝑃 is monotone for a set of variables 𝑉 , it is possible to characterize a

class of non-trivial numerical abstract domains and sets of inputs where the BCA of 𝑃 is complete

on them when analyzing variables in 𝑉 . These abstract domains are non-relational abstractions

that refine interval analysis (i.e., at least as precise as intervals) and satisfy a topological convexity

condition. This result explains why we have no false-alarms when using JReLUKInt for checking
numerical properties of ReLU expressible in the interval abstraction. Moreover, as composing

monotonically non-decreasing (resp. non-increasing) programs preserves the non-decreasing (resp.

non-increasing) property, the complete-analyzability property also holds on the composition. For

example, the program ReLU; Bin made by composing ReLU and the non-decreasing binary step

program Bin

def
= if 𝑥 < 0 then 𝑥 := 0 else 𝑥 := 1 preserves the complete-analyzability property.

To the best of our knowledge, the results presented in this paper establish for the first time a

relation between an extensional program property (monotonicity) and the possibility of designing

a precise abstract interpretation, confirming the intuition that precision in abstract interpretation,

although intensional, has also an extensional aspect, namely it is influenced not only by how

programs are written but also by what they compute. For instance, changing the implementation of

ReLU into the semantically equivalent (on Z) program ReLU
𝑤 def
= while 𝑥 < 0 do 𝑥 := 𝑥 + 1 does not

change the complete-analyzability of the program: ReLU
𝑤
is still monotonically non-decreasing on

its variable 𝑥 therefore it can be precisely analyzed on the interval abstract domain. This aspect sheds

new lights on the existence of provably complete abstract interpreters over a family of (non-trivial)

abstractions for a restricted (non-trivial) class of programs, namely, the monotone programs. The

complete-analyzability property could play an important role in verifying safety-critical properties

of (parts of) programs, such as runtime errors in avionics software [Bertrane et al. 2011, 2015],

where even false-alarms are not admissible. Our proof system may help in factorizing programs in

sub-components that behave monotonically. On these sub-components, precise program analyses

can be obtained by using computationally less expensive non-relational abstract domains, such as

the intervals abstraction.
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2 PRELIMINARIES
After introducing some preliminaries on sets and order theory, in Section 2.1 we define a simple

untyped deterministic while-language and its collecting denotational semantics, while in Section 2.2

we provide a recap of the necessary background on the abstract interpretation framework.

2.1 Programs and Semantics
Order Theory. Given two sets 𝑆 and 𝑇 , ℘(𝑆) denotes the powerset of 𝑆 , the symbol ∅ corresponds

to the empty set, 𝑆 ∖𝑇 denotes the set-difference, |𝑆 | denotes the cardinality of 𝑆 , 𝑆 ⊆ 𝑇 denotes

sets inclusion while 𝑆 ⊂ 𝑇 denotes strict sets inclusion. We denote with N, Z and R the sets of all,

respectively, natural, integer and real numbers, and with I ∈ {N,Z,R} one of the three mentioned

sets. A set 𝑆 ⊆ R𝑛
is convex when, for all 𝑥,𝑦 ∈ 𝑆 and for any scalar 𝑡 ∈ [0, 1], the vector (1−𝑡)𝑥 +𝑡𝑦

is also in 𝑆 . Although the notion of convexity does not directly apply to sets of integers, we misuse

the term convex to indicate also when a set of (vectors of) integers 𝑆 ⊆ I𝑛 exhibits a form of

convexity. In this case, we refer to the definition of integrally convex set [Yang 2009]. Specifically, a

set of vectors of integers 𝑆 ⊆ Z𝑛
is convex if any point 𝑦 in the convex hull (which is a subset of

R𝑛
) of 𝑆 can be expressed as a convex combination of the points of 𝑆 that are “near” 𝑦, where “near”

means that the (Euclidean) distance between each two coordinates is less than 1. So for instance,

the set {0, 1, 2} is convex because it represents a consecutive sequence of integers without “holes”,
which is not the case for {0, 1, 2, 5} as the integer numbers 3 and 4 are missing. When a binary

relation ∼⊆ 𝑆 × 𝑆 is defined over a set which differs from N,Z and R, we will use the subscript ∼𝑆

except for the straightforward equivalence relation =. A set 𝐿 endowed with a partial order relation

≤𝐿 is called a partially ordered set, or briefly poset, and it is denoted by ⟨𝐿, ≤𝐿⟩. Its strict version
is denoted by the symbol <𝐿 such that for all 𝑥,𝑦 ∈ 𝐿, 𝑥 <𝐿 𝑦 if and only if 𝑥 ≤𝐿 𝑦 and 𝑥 ≠ 𝑦.

We will consider posets 𝐿 for which all subsets 𝑋 ⊆ 𝐿 have a unique join, also called least upper

bound (lub), denoted

∨
𝐿 𝑋 , and a unique meet, also called greatest lower bound (glb), denoted∧

𝐿 𝑋 . The tuple ⟨𝐿, ≤𝐿,∨𝐿,∧𝐿,⊤𝐿,⊥𝐿⟩, where ⊤𝐿 and ⊥𝐿 are, respectively, the greatest (top) and

least (bottom) elements in 𝐿, while ∨𝐿 and ∧𝐿 are, respectively, the lub and glb binary operators, is

called a complete lattice.

Monotonicity plays a central role in our work. The following represents the canonical definition

of monotonicity of functions over posets [Scott and Strachey 1971] (to simplify the presentation,

we consider unary functions):

Definition 2.1 (Monotonemappings). A function 𝑓 : 𝐿 → 𝐿 over a poset ⟨𝐿, ≤𝐿⟩ is non-decreasing
(resp. non-increasing) if and only if for all 𝑥,𝑦 ∈ 𝐿 such that 𝑥 ≤𝐿 𝑦, 𝑓 preserves (resp. reverses) the
order, i.e., 𝑓 (𝑥) ≤𝐿 𝑓 (𝑦) (resp. 𝑓 (𝑥) ≥𝐿 𝑓 (𝑦)).

𝑓 is monotone if it is either non-decreasing or non-increasing. ■

The composition of two functions 𝑓1 : 𝐿1 → 𝐿2, 𝑓2 : 𝐿2 → 𝐿3 is denoted by 𝑓2 ◦ 𝑓1 : 𝐿1 → 𝐿3. A

function 𝑓 : 𝐿1 → 𝐿2 between complete lattices is additive (resp. co-additive) if for all 𝑌 ⊆ 𝐿1,

𝑓 (∨𝐿1𝑌 ) = ∨𝐿2 𝑓 (𝑌 ) (resp. 𝑓 (∧𝐿1𝑌 ) = ∧𝐿2 𝑓 (𝑌 )). The Knaster-Tarski theorem guarantees that if 𝐿

is a complete lattice and 𝑓 : 𝐿 → 𝐿 a monotone function, then the set of fixpoints of 𝑓 in 𝐿 is also a

complete lattice. As a consequence, since complete lattices cannot be empty (they must contain

the supremum of empty set), the theorem guarantees the existence of at least one fixpoint of 𝑓 ,

and even the existence of a least (or greatest) fixpoint, denoted lfp(𝑓 ) (resp. gfp(𝑓 )). Moreover, if

𝑓 : 𝐿 → 𝐿 is (Scott) continuous, i.e., 𝑓 preserves lubs of chains in 𝐿, then lfp(𝑓 ) = ∨
𝐿 𝑛∈N 𝑓 𝑛 (⊥𝐿),

where, for all 𝑛 ∈ N and 𝑥 ∈ 𝐿, 𝑓 𝑛 is inductively defined by: 𝑓 0 (𝑥) def
= 𝑥 and 𝑓 𝑛+1 (𝑥) def

= 𝑓 (𝑓 𝑛 (𝑥)).

Syntax and Semantics. For our purposes we consider a standard untyped deterministic while-

language Prog with no runtime errors, as e.g. the one defined in [Winskel 1993], with the syntax
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JskipK𝑆 def
= 𝑆

J𝑥 := eK𝑆 def
= {𝜎 [𝑥 ↦→ LeM𝜎] | 𝜎 ∈ 𝑆}

J𝑃1; 𝑃2K𝑆
def
= J𝑃2KJ𝑃1K𝑆

Jif b then 𝑃1 else 𝑃2K𝑆
def
= J𝑃1KJbK𝑆 ∪ J𝑃2KJ¬ bK𝑆

Jwhile b do 𝑃K𝑆 def
= J¬ bK

(
lfp(𝜆𝑇 . 𝑆 ∪ J𝑃KJbK𝑇 )

)
Fig. 1. Collecting denotational semantics of Prog.

defined as follows:

AExp ∋ e ::= 𝑣 ∈ I | 𝑥 ∈ Var | e+ e | e− e | e ∗ e
BExp ∋ b ::= 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 | e⋖ 0 | e⋗ 0 | b∧ b | b∨ b

Prog ∋ 𝑃 ::= skip | 𝑥 := e | 𝑃1; 𝑃2 |
if 𝑏 then 𝑃1 else 𝑃2 | while 𝑏 do 𝑃

where ⋖ ∈ {<, ≤}, ⋗ ∈ {>, ≥} and, by abusing notation, Var is both used to denote a denumerable

set of variables and, when applied to a program 𝑃 ∈ Prog, denotes the (finite) set of variables in
the text of 𝑃 , namely, Var : Prog → ℘(Var). Similarly, when applied to arithmetic and Boolean

expressions, Var (𝑒) and Var (𝑏) denote the variables appearing in those expressions. We sometimes

abbreviate operations like 2 ∗ 𝑥 and 𝑥 ∗ 𝑥 to, respectively, 2𝑥 and 𝑥2. From now on and in the rest of

the paper, whenever we talk about a program 𝑃 ∈ Prog, we assume |Var (𝑃) | = 𝑛, unless otherwise

specified. A store 𝜎𝑃 for 𝑃 is a total function from variables in the text of 𝑃 to their values, namely,

𝜎𝑃 : Var (𝑃) → I. A store 𝜎𝑃 can be equivalently specified as a 𝑛-tuple (𝑣1, . . . , 𝑣𝑛) ∈ I𝑛 where for all

𝑖 ∈ [1, 𝑛] and Var (𝑃) = {𝑥1, . . . , 𝑥𝑛}, 𝜎 (𝑥𝑖 ) = 𝑣𝑖 , therefore I |Var (𝑃 ) | is the set of all possible stores for
𝑃 . Most of the examples shown in the paper consider programs with Var (𝑃) = {𝑥,𝑦, 𝑧}, so that, a

tuple like (10, 2, 5) ∈ I3 corresponds to the store 𝜎𝑃 such that 𝜎𝑃 (𝑥) = 10, 𝜎𝑃 (𝑦) = 2 and 𝜎𝑃 (𝑧) = 5.

A single store update is written 𝜎𝑃 [𝑥 ↦→ 𝑣]. We will omit the subscript 𝑃 to 𝜎 when it is clear from

context. The semantics of arithmetic and Boolean expressions of 𝑃 is defined by the functions,

respectively, LeM : I𝑛 → I and LbM : I𝑛 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} whose definitions are straightforward and

therefore omitted. The collecting semantics of arithmetic and Boolean expressions is respectively

defined by the functions JeK : ℘(I𝑛) → ℘(I) and JbK : ℘(I𝑛) → ℘(I𝑛) defined as: JeK𝑆 def
= {LeM𝜎 |

𝜎 ∈ 𝑆} and JbK𝑆 def
= {𝜎 ∈ 𝑆 | LbM𝜎 = 𝑡𝑟𝑢𝑒} so that JbK𝑆 ⊆ 𝑆 filters the stores of 𝑆 making b true. The

collecting denotational program semantics is J𝑃K : ℘(I𝑛) → ℘(I𝑛) and it is defined in Fig. 1, where

the operator ¬ b transforms the Boolean expression b into its negate. It is the standard predicate

transformer semantics (also called strongest postcondition semantics) since J𝑃K𝑆 ∈ ℘(I𝑛) turns out
to be the strongest store predicate for the store precondition 𝑆 ∈ ℘(I𝑛). The terminology “collecting

semantics” comes from the fact that for all 𝑃 ∈ Prog, J𝑃K : ℘(I |Var (𝑃 ) | ) → ℘(I |Var (𝑃 ) | ) is an additive

function on the complete lattice ⟨℘(I |Var (𝑃 ) | ), ⊆,∪,∩, I |Var (𝑃 ) | ,∅⟩, so that J𝑃K𝑆 = ∪𝜎∈𝑆 J𝑃K{𝜎} holds.
When J𝑃K is applied to a singleton {𝜎}, we use the simpler notation J𝑃K𝜎 in place of J𝑃K{𝜎}.

2.2 Abstract Interpretation
We recall some background on abstract interpretation as defined by Cousot [2021]; Cousot and

Cousot [1977, 1979, 1992] and based on the correspondence between a domain of concrete or exact

properties and a domain of abstract or approximate properties.
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Abstract Domains. In the following we consider abstract domains (also called abstractions) as

specified by Galois connections/insertions (GCs/GIs for short). Concrete and abstract domains are

assumed to be complete lattices, respectively ⟨C, ≤C⟩ and ⟨A, ≤A⟩, which are related by abstraction
and concretization maps, 𝛼A : C → A and 𝛾A : A → C, that give rise to a GC (𝛼A, C,A, 𝛾A),
that is, for all 𝑎 ∈ A and 𝑐 ∈ C: 𝛼A (𝑐) ≤A 𝑎 ⇔ 𝑐 ≤C 𝛾A (𝑎), where we use the subscript to
functions 𝛼A and 𝛾A in order to emphasize the abstract domain A considered. A GC is a GI when

𝛼A ◦ 𝛾A = 𝜆𝑥.𝑥 . Let us recall some basic properties of a GC (𝛼A, C,A, 𝛾A): (1) 𝛼A is additive and

𝛾A is co-additive; (2) 𝛾A ◦ 𝛼A : C → C is a closure operator, namely, it is a monotone, idempotent

and increasing function; (3) if 𝜌 : C → C is a closure operator then (𝜌, C, 𝜌 (C), 𝜆𝑥 .𝑥) is a GI. For
our purposes, we will deal only with GI which are standard in abstract interpretation (e.g., Sign,

Intervals, Zones, etc.) ensuring the existence of abstraction functions. We use Abs(C) to denote all

the possible abstractions of a concrete domain C, where A ∈ Abs(C) means that A is an abstract

domain of C defined by some GI which is left unspecified. We say that a concrete element 𝑐 ∈ C is

representable (or expressible) in A whenever 𝛾A (𝛼A (𝑐)) = 𝑐 . If we consider two abstract domains

A1,A2 ∈ Abs(C) then A1 is a more precise abstraction than A2, or, equivalently, A2 abstracts A1,

if and only if for all 𝑐 ∈ C, 𝛾A1
(𝛼A1

(𝑐)) ≤C 𝛾A2
(𝛼A2

(𝑐)), and it is denoted by A1 ≤Abs(C) A2. An

abstract domain A ∈ Abs(C) is said to be trivial when A = C, namely, it is isomorphic to the

concrete domain C (i.e., 𝛾A ◦ 𝛼A is the identity function).

Non-relational Abstractions. Given a program 𝑃 with |Var (𝑃) | = 𝑛 variables, an abstract domain

in Abs(℘(I𝑛)) is said to be non-relational when it does not take into account any relationship

between different variables. Let A ∈ Abs(℘(I)) be any abstract domain abstracting ℘(I), then
A𝑛 ∈ Abs(℘(I𝑛)) is its non-relational extension to 𝑛 variables with abstraction and concretization

maps, respectively,𝛼A𝑛 : ℘(I𝑛) → A𝑛
and𝛾A𝑛 : A𝑛 → ℘(I𝑛), defined as follows.A𝑛

is the domain

of abstract tuples (𝑎1, . . . , 𝑎𝑛) ∈ A𝑛
with 𝑎𝑖 ∈ A, representing the abstract stores, equivalently

denoted by the function 𝜎♯
: Var (𝑃) → A, where 𝜎♯ (𝑥𝑖 ) = 𝑎𝑖 returns the abstract value assumed by

variable 𝑥𝑖 . We denote with ⊥A𝑛
def
= (⊥A, . . . ,⊥A) the bottom element, with ⊤A𝑛

def
= (⊤A, . . . ,⊤A)

the top element, and with ≤A𝑛 the order on abstract stores: 𝜎
♯

1
≤A𝑛 𝜎

♯

2
if and only if 𝜎

♯

1
= ⊥A𝑛 , or

𝜎
♯

1
, 𝜎

♯

2
≠ ⊥A𝑛 and ∀𝑖 ∈ [1, 𝑛] : 𝜎♯

1
(𝑥𝑖 ) ≤A 𝜎

♯

2
(𝑥𝑖 ). Given 𝑆 ∈ ℘(I𝑛) and 𝜎♯ ∈ A𝑛

, then 𝛼A𝑛 (𝑆) and
𝛾A𝑛 (𝜎♯) can be defined as, respectively:

𝛼A𝑛 (𝑆) def
=

{ ⊥A𝑛 if 𝑆 = ∅,
(𝑎1, . . . , 𝑎𝑛) ∈ A𝑛

where 𝑎𝑖
def
= 𝛼A ({𝜎 (𝑥𝑖 ) | 𝜎 ∈ 𝑆}) otherwise

𝛾A𝑛 (𝜎♯) def
=

{
∅ if 𝜎♯ = ⊥A𝑛 ,

{(𝑣1, . . . , 𝑣𝑛) ∈ I𝑛 | 𝑣𝑖 ∈ 𝛾A (𝜎♯ (𝑥𝑖 ))} otherwise.

In what follows, we abuse notation and drop the superscript 𝑛 in A𝑛
, 𝛼A𝑛 , 𝛾A𝑛 , ⊥A𝑛 , ⊤A𝑛 and

≤A𝑛 as it will be clear from the context. The following are examples of non-relational abstractions

in Abs(℘(I))1.

Example 2.2. The classical pedagogical examples include the abstract domains Sign
def
= {I,−, 0, +,∅}

and Parity
def
= {Z, even, odd,∅} for, respectively, sign and parity analysis of numerical variables.

These are straightforward non-relational abstractions of ⟨℘(I), ⊆⟩ [Cousot and Cousot 1976],

namely, Sign ∈ Abs(℘(I)) and Parity ∈ Abs(℘(Z)), where the order relation ≤Sign is defined as

∅ <Sign 0 <Sign − <Sign I and ∅ <Sign 0 <Sign + <Sign I, while ∅ <Parity even <Parity Z and

1
For simplicity, we assume that we use some perfect mathematical version of numeric sets and not machine-integers nor

floating-point numbers used actually in most computer languages.
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∅ <Parity odd <Parity Z. The abstraction maps 𝛼Sign : ℘(I) → Sign and 𝛼Parity : ℘(Z) → Parity are
defined as follows:

𝛼Sign (𝑋 ) def
=



∅ if 𝑋 = ∅,
0 if 𝑋 = {0},
+ if ∀𝑥 ∈ 𝑋 . 𝑥 ≥ 0,

− if ∀𝑥 ∈ 𝑋 . 𝑥 ≤ 0,

I otherwise

𝛼Parity (𝑋 ) def
=


∅ if 𝑋 = ∅,
even if ∀𝑥 ∈ 𝑋 . 𝑥 mod 2 = 0,

odd if ∀𝑥 ∈ 𝑋 . 𝑥 mod 2 ≠ 0,

Z otherwise

where mod is the integer modulo operation. ♦

Example 2.3. The interval abstraction Int [Cousot and Cousot 1976] is an efficient and useful non-

relational abstract domain for deriving bounds to numerical variables, e.g., the absence of arithmetic

overflows or out-of-bounds array accesses. Let I∗
def
= I ∪ {−∞, +∞} and assume that the standard

ordering ≤ on I is extended to I∗ in the usual way. Hence Int
def
= {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ I∗, 𝑎 ≤ 𝑏} ∪ {⊥Int}

endowed with the standard ordering ≤Int induced by the interval containment gives rise to a

complete lattice, where ⊥Int is the bottom element and ⊤Int
def
= [−∞, +∞] is the top element. We

have that Int ∈ Abs(℘(I)). Consider the function min : ℘(I) → I∗ defined as min(𝑆) def
= 𝑥 if there

exists 𝑥 ∈ 𝑆 such that for all 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦, while min(𝑆) def
= −∞ otherwise, and the function

max : ℘(I) → I∗ dually defined. The abstraction map 𝛼Int : ℘(I) → Int is defined by:

𝛼Int (𝑋 ) def
=

{
⊥Int if 𝑋 = ∅,
[min(𝑋 ),max(𝑋 )] otherwise.

Note that 𝛼Int preserves arbitrary unions in ℘(I) and therefore gives rise to a GI. ♦

Abstract Interpretation. Let 𝑓 : C → C be a concrete monotone (transfer) function (to keep notation

simple we consider unary functions) and let 𝑓 ♯ : A → A be a corresponding abstract (transfer)

function defined on some abstraction A ∈ Abs(C). Then, 𝑓 ♯ is a correct (or sound) approximation

of 𝑓 on A when 𝛼A ◦ 𝑓 ≤A 𝑓 ♯ ◦ 𝛼A holds. If 𝑓 ♯ is correct for 𝑓 then least fixpoint correctness

holds, that is, 𝛼A (lfp(𝑓 )) ≤A lfp(𝑓 ♯) holds. When dealing with GIs between all abstract transfer

functions that approximate a concrete one, we can define the most precise one.

Definition 2.4 (Best correct approximation). The abstract function 𝑓 𝛼 : A → A defined as

𝑓 𝛼
def
= 𝛼A ◦ 𝑓 ◦ 𝛾A is called the best correct approximation (BCA for short) of 𝑓 on A. ■

It turns out that any abstract function 𝑓 ♯ is a correct approximation of 𝑓 if and only if 𝑓 𝛼 ≤A 𝑓 ♯

[Cousot and Cousot 1977]. An abstract function 𝑓 ♯ is precise when it is complete.

Definition 2.5 (Complete approximations over an input). Given an input 𝑐 ∈ C, an abstract

function 𝑓 ♯ : A → A is said to be a complete approximation of 𝑓 : C → C on A at the input 𝑐 ,
when 𝛼A (𝑓 (𝑐)) = 𝑓 ♯ (𝛼A (𝑐)) holds. ■

This definition of completeness is taken from the local completeness notion introduced by Bruni et al.

[2021, 2023], which is a weakening of the standard notion of completeness requiring Definition 2.5

to hold over all possible inputs 𝑐 ∈ C [Cousot 2021; Giacobazzi et al. 2000]. Since we deal with local

properties only, namely, properties requiring to specify an input (e.g., completeness, monotonicity,

convexity, etc.), wewill simply omit theword “local” as the inputwill be always specified. Conversely,

when we do not specify the input, we implicitly assume that the property holds for all possible

inputs. Intuitively, when 𝑓 ♯ is an abstract transfer function on A used in some static program

analysis algorithm, completeness encodes an optimal precision for 𝑓 ♯ at input 𝑐 , meaning that the
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abstract behavior of 𝑓 ♯ on A exactly matches the abstraction in A of the concrete behavior of 𝑓 . It

turns out that the possibility of defining a complete approximation 𝑓 ♯ of 𝑓 on some A ∈ Abs(C)
and 𝑐 ∈ C only depends upon the concrete function 𝑓 , the abstraction A and the input 𝑐 , that

is, 𝑓 𝛼 (𝑐) is the only possible option as complete approximation of 𝑓 (𝑐), as stated by the following

theorem [Bruni et al. 2021; Giacobazzi et al. 2000].

Theorem 2.6. Completeness of a sound abstract function 𝑓 ♯ over an input 𝑐 ∈ C holds if and only if

𝛼A (𝑓 (𝑐)) = 𝛼A (𝑓 (𝛾A (𝛼A (𝑐)))) = 𝑓 𝛼 (𝛼A (𝑐)) = 𝑓 ♯ (𝛼A (𝑐)) □

Completeness and Static Verification. The abstract interpreter applied to a program 𝑃 ∈ Prog is

specified by the function J𝑃KA : A → A, where A ∈ Abs(℘(I |Var (𝑃 ) | )) is the abstraction of

properties of interest and J𝑃KA soundly approximates the concrete semantics J𝑃K on the abstract

domain A. We denote with J𝑃K𝛼A : A → A the abstract interpreter given by the BCA and defined

as J𝑃K𝛼A
def
= 𝛼𝐴 ◦ J𝑃K ◦ 𝛾𝐴. We are not going to further specify how the abstract semantics J𝑃KA is

defined, since, thanks to Theorem 2.6, in order to conclude that J𝑃KA𝛼A (𝑆) is complete over the

input 𝑆 ∈ ℘(I |Var (𝑃 ) | ), it is sufficient to show that J𝑃KA𝛼A (𝑆) = J𝑃K𝛼A𝛼A (𝑆) = 𝛼A (J𝑃K𝑆). We will

use the symbol J·KA for referring to a generic abstract interpreter without specifying the program.

The goal of a static analysis is to soundly answer some questions on the dynamic (concrete)

execution of programs. More specifically, given a program 𝑃 ∈ Prog, an input 𝑆 ⊆ I𝑛 and a

safety property (also called correctness property) Spec ⊆ I𝑛 representable in our chosen abstract

domain A, the aim of a static verification J𝑃KA𝛼A (𝑆) is either to prove J𝑃K𝑆 ⊆ Spec, namely

that the behavior of 𝑃 on input 𝑆 satisfies Spec, or to raise some alerts that point out which

circumstances may cause a violation of Spec. The presence of false alarms is in this case unavoidable

due to the need of program verifiers J𝑃KA to over-approximate the program behaviour J𝑃K: this
is an unavoidable consequence of the will to solve an otherwise undecidable analysis problem.

However, when the abstract interpreter is proved to be complete on 𝑃 with input 𝑆 , namely when

𝛼A (J𝑃K𝑆) = J𝑃KA𝛼A (𝑆), then proving J𝑃K𝑆 ⊆ Spec by executing the program is the same as

checking whether J𝑃KA𝛼A (𝑆) ≤A 𝛼A (Spec) holds, i.e. no false alarms can arise from checking

the specification through the abstract interpreter: all the raised alarms are surely real. This is

summarized by the following theorem:

Theorem 2.7. If J𝑃KA is complete at the set of inputs 𝑆 ⊆ I𝑛 and Spec ⊆ I𝑛 is representable in A,
then the following holds: J𝑃K𝑆 ⊆ Spec ⇔ J𝑃KA𝛼A (𝑆) ≤A 𝛼A (Spec).

Proof. Let A ∈ Abs(℘(I𝑛)), J𝑃KA be complete at input 𝑆 , and Spec = 𝛾A (𝛼A (Spec)).
(⇐) This implication is a direct consequence of the soundness assumption of J𝑃KA and it does

not make use of the completeness hypothesis:

J𝑃KA𝛼 (𝑆) ≤A 𝛼A (Spec) ⇒ [by Soundness of J·KA]

𝛼A (J𝑃K𝑆) ≤A 𝛼A (Spec) ⇒ [by 𝛾A monotone]

𝛾A (𝛼A (J𝑃K𝑆)) ⊆ 𝛾A (𝛼A (Spec)) ⇒ [by Spec = 𝛾A (𝛼A (Spec))]
𝛾A (𝛼A (J𝑃K𝑆)) ⊆ Spec ⇒ [by 𝛾A ◦ 𝛼A closure operator]

J𝑃K𝑆 ⊆ Spec

(⇒) This implication is a direct consequence of the completeness assumption of J𝑃KA at 𝑆 :

J𝑃K𝑆 ⊆ Spec ⇒ [by 𝛼A monotone]

𝛼A (J𝑃K𝑆) ≤A 𝛼A (Spec) ⇒ [by J𝑃KA complete at 𝑆]

J𝑃KA𝛼 (𝑆) ≤A 𝛼A (Spec) □
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3 VERIFYING MONOTONICITY
In this section we: (1) adapt the notion of monotonicity to programs, and (2) verify whether a

given set of program variables manifests a monotone behavior in the considered program on a

specified set of inputs. This last point requires to understand how monotonicity is propagated

during computation.

Let us start by defining when a program can be considered monotone. Definition 2.1 already

provides us the standard notion of monotonicity for functions over posets. Given a program

𝑃 ∈ Prog, its denotational semantics J𝑃K over singletons 𝜎 ∈ I |Var (𝑃 ) | can be considered as a function
from ⟨I |Var (𝑃 ) | , ≤⟩ to ⟨I |Var (𝑃 ) | , ≤⟩ where here ≤ is the componentwise inequality between tuples

(stores). This means that Definition 2.1 can also be adopted for defining when a program preserves

or reverses the order of its inputs. However, since programs may manipulate temporary variables

or variables associated to computations that are not the target of our study, we may be interested

in a notion of monotonicity that considers only a subset of program variables. For this reason we

introduce the notion of 𝑉 -monotonicity that is parametric w.r.t. a finite set 𝑉 ⊆ Var of program
variables. Let 𝑃 ∈ Prog be a program with |Var (𝑃) | = 𝑛 variables, and ≤𝑉

be the elementwise

inequality only for variables in 𝑉 and that also appear in Var (𝑃), formally, ∀𝜎1, 𝜎2 ∈ I𝑛 :

𝜎1 ≤𝑉 𝜎2
def
⇔ ∀𝑥 ∈ 𝑉 ∩ Var (𝑃). 𝜎1 (𝑥) ≤ 𝜎2 (𝑥)

and, similarly, =𝑉 be the elementwise equality for 𝑉 . Further, let D𝑃 ⊆ I𝑛 be the domain of 𝑃 ,

namely, the set of input stores over which 𝑃 terminates: D𝑃
def
= {𝜎 ∈ I𝑛 | J𝑃K𝜎 ≠ ∅}.

Definition 3.1 (𝑽 -Monotone program). The program 𝑃 ∈ Prog is said to be 𝑉 -non-decreasing
(resp. 𝑉 -non-increasing) at inputs 𝑆 ⊆ I𝑛 for the variables in 𝑉 ⊆ Var , if and only if for all

𝜎1, 𝜎2 ∈ 𝑆 ∩ D𝑃 the following condition holds:

𝜎1 ≤𝑉 𝜎2 ⇒ J𝑃K𝜎1 ≤𝑉 J𝑃K𝜎2 (resp. J𝑃K𝜎1 ≥𝑉 J𝑃K𝜎2)
𝑃 is called 𝑉 -monotone at 𝑆 ⊆ I𝑛 if it is either 𝑉 -non-decreasing or 𝑉 -non-increasing at 𝑆 . ■

Intuitively, a program 𝑃 is𝑉 -non-decreasing (resp.𝑉 -non-increasing) for a set of variables𝑉 ⊆ Var
whenever for all comparable input stores w.r.t. 𝑉 and for which 𝑃 terminates, the execution of 𝑃

preserves (resp. reverses) the relative order of stores on variables in 𝑉 . There are no constraints on

the result of computation from input states that are not comparable or on the values of variable not

in 𝑉 : they can behave in a non-monotone way.

Example 3.2. Consider the sequential composition of the following assignments:

𝑃 : 𝑥 := 2𝑥 ; 𝑦 := 𝑦 + 1; 𝑧 := 𝑥 + 𝑦
Variables 𝑥 and 𝑦 increase monotonically their respective inputs, and 𝑧 is the sum of those two

variables. This implies that each time we take two states 𝜎1, 𝜎2 ∈ R3
such that 𝜎1 ≤{𝑥,𝑦,𝑧} 𝜎2, after

executing 𝑃 on both input states, the order is preserved: J𝑃K𝜎1 ≤{𝑥,𝑦,𝑧} J𝑃K𝜎2. Therefore, we can
conclude that this program is {𝑥,𝑦, 𝑧}-non-decreasing over R3

. However, note that 𝑃 is not {𝑥, 𝑧}-
non-decreasing: in this case we can consider states having the 𝑦 component change arbitrarily.

Consider (1, 0, 0) ≤{𝑥,𝑧} (2,−10, 0), then J𝑃K(1, 0, 0) = (2, 1, 3) ≰{𝑥,𝑧} (4,−9,−5) = J𝑃K(2,−10, 0). ♦

When we say that 𝑃 is 𝑉 -monotone (or 𝑉 -non-decreasing or 𝑉 -non-increasing) without specifying

the set of input stores, we implicitly assume that 𝑃 is 𝑉 -monotone (or 𝑉 -non-decreasing or 𝑉 -non-

increasing) over all possible inputs I |Var (𝑃 ) | . Similarly, if we do not specify the set 𝑉 of variables,

we implicitly assume for all variables used in the considered program. This last assumption also

applies to ≤ and = when they are used for comparing stores.
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3.1 Monotonicity Judgments
Given a portion of code, can we automate the process of proving whether a set of variables behave

monotonically w.r.t. Definition 3.1? The general answer is no because our core language Prog is
Turing-complete and monotonicity is an extensional program property, therefore undecidable [Rice

1953]. For this reason, we propose a sound approximation by defining a proof system able to

infer, inductively from the program syntax, the monotonicity judgment 𝑀𝑜𝑛(𝑃, 𝑆,𝑉 ) meaning

that program 𝑃 is 𝑉 -monotone w.r.t. the set of variables 𝑉 ⊆ Var and over a set of inputs 𝑆2. We

write ⊢ 𝑀𝑜𝑛(𝑃, 𝑆,𝑉 ) when the proof system allows us to formalize a derivation for the mono-

tonicity judgement𝑀𝑜𝑛(𝑃, 𝑆,𝑉 ). We will show that the proposed proof system is sound, namely,

⊢ 𝑀𝑜𝑛(𝑃, 𝑆,𝑉 ) implies that𝑀𝑜𝑛(𝑃, 𝑆,𝑉 ) holds. Our proof system computes an underapproximation
of the sets of monotone variables:

{𝑉 ⊆ Var | ⊢ 𝑀𝑜𝑛(𝑃, 𝑆,𝑉 )} ⊆ {𝑅 ⊆ Var | 𝑀𝑜𝑛(𝑃, 𝑆, 𝑅)}.
Since the analysis targets a Turing-complete language, the proof system is incomplete, i.e., it may

happen that a program is 𝑉 -monotone but the verifier is not able to find a derivation for proving it.

From the next section, we will focus our attention on the analysis of the 𝑉 -non-decreasing pro-

gram property, also denoted by the predicate𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ) (the non-increasing case𝑀𝑜𝑛↘ (𝑃, 𝑆,𝑉 )
follows by duality). We start by providing the rules for expressions, assignments and command com-

positions (Fig. 2), then we proceed by treating programs with if-branches (Fig. 3) and while-loops

(Fig. 5).

3.2 Expressions, Assignments and Sequential Compositions
To infer that 𝑥 := 𝑒 is 𝑉 -non-decreasing at 𝑆 , we need to verify that for all 𝜎1, 𝜎2 ∈ 𝑆 ∩ D𝑥 :=𝑒 it

holds that 𝜎1 ≤𝑉 𝜎2 ⇒ J𝑥 := 𝑒K𝜎1 ≤𝑉 J𝑥 := 𝑒K𝜎2. For 𝑥 ∈ 𝑉 , we can soundly derive monotonicity

whenever the following three conditions are satisfied: (1) the expression 𝑒 uses only variables

in 𝑉 , i.e., Var (𝑒) ⊆ 𝑉 , (2) the set of inputs 𝑆 is convex, and (3) the gradient of the function

L𝑒 M : I |Var (𝑒 ) | → I, i.e., the column vector of all partial derivatives of L𝑒 M denoted

∇L𝑒 M def
= ( 𝜕L𝑒 M

𝜕𝑥1
, . . . ,

𝜕L𝑒 M
𝜕𝑥 |Var (𝑒 ) |

)𝑇

is always non-negative at all inputs in the convex space 𝑆 (for the mathematical notion of differ-

entiation of multivariate functions see, e.g., [Trench 2013]). Since our language Prog admits only

polynomial expressions, all functions L𝑒 M are differentiable over I |Var (𝑒 ) | , namely, the gradient ∇L𝑒 M
is always defined and can be obtained by symbolic differentiation. By requiring ∇L𝑒 M ≥ 0 |Var (𝑒 ) |×1,
where 0 |Var (𝑒 ) |×1 is the column vector of all 0s having number of rows equal to |Var (𝑒) |, the result
is a system of constraints on Var (𝑒), limiting the input states to only those that make the gradient

∇L𝑒 M non-negative [Trench 2013].

Example 3.3. Consider the expression 𝑥2 + 𝑦2 over R2
. By calculating the (symbolic) gradient

of the function L𝑥2 + 𝑦2 M, we get ∇L𝑥2 + 𝑦2 M = (2𝑥, 2𝑦)𝑇 . By setting ∇L𝑥2 + 𝑦2 M ≥ 02×1, namely,

2𝑥 ≥ 0 ∧ 2𝑦 ≥ 0, we can conclude that the gradient of the function L𝑥2 + 𝑦2 M is non-negative for
all points (𝑥,𝑦) ∈ R2

such that 𝑥 ≥ 0 and 𝑦 ≥ 0. As the region 𝑅 = {(𝑥,𝑦, 𝑧) | 𝑥 ≥ 0 ∧ 𝑦 ≥ 0} is
convex, the function L𝑥2 + 𝑦2 M is non-decreasing at any set 𝑆 ⊆ 𝑅. ♦

Note that the space region satisfying the condition ∇L𝑒 M ≥ 0 |Var (𝑒 ) |×1 might not be convex (this is

the case, e.g., for the function L𝑥3 + 𝑥2 M). In order to be sure that each pair of states 𝜎1, 𝜎2 such that

𝜎1 ≤𝑉 𝜎2, are taken in the same convex region where the gradient ∇L𝑒 M is non-negative, we require
2
We will consider input sets 𝑆 by either stating their values or by using their characterization as first-order predicates. For

instance, the set {0, 1, 2} ∈ ℘(Z) may also be represented by the predicate 0 ≤ 𝑥 ≤ 2, and the empty set ∅ by 𝑓𝑎𝑙𝑠𝑒 .
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𝑀𝑜𝑛↗ (skip, 𝑆,𝑉 )
(skip)

𝑀𝑜𝑛↗ (𝑃, 𝑓𝑎𝑙𝑠𝑒,𝑉 )
(empty𝑖𝑛)

𝐴𝑠𝑠𝑖𝑔𝑛(𝑃) ∩𝑉 = ∅
𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 )

(empty𝑣𝑎𝑟 )
Var (𝑒) ⊆ 𝑉 𝐶𝑜𝑛𝑣 (𝑆) 𝑆 ⇒ ∇L𝑒 M ≥ 0

𝑀𝑜𝑛↗ (𝑥 := 𝑒, 𝑆,𝑉 )
(assign)

𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ) 𝑆 ′ ⇒ 𝑆

𝑀𝑜𝑛↗ (𝑃, 𝑆 ′,𝑉 ) (weaken) 𝑀𝑜𝑛↗ (𝑃1, 𝑆1,𝑉 ) 𝑀𝑜𝑛↗ (𝑃2, 𝑆2,𝑉 ) {𝑆1}𝑃1{𝑆2}
𝑀𝑜𝑛↗ (𝑃1; 𝑃2, 𝑆1,𝑉 )

(seq)

Fig. 2. Non-decreasing analysis of base commands and sequential composition.

that both 𝑆 forms a convex set, denoted by the predicate 𝐶𝑜𝑛𝑣 (𝑆), and all the states in 𝑆 satisfies

∇L𝑒 M ≥ 0 |Var (𝑒 ) |×1 (written more concisely ∇L𝑒 M ≥ 0). Whenever these conditions are satisfied and

the expression 𝑒 in the assignment 𝑥 := 𝑒 uses only variables in 𝑉 , then we can safely conclude

that 𝑥 := 𝑒 is 𝑉 -non-decreasing, as formalized in rule (assign) of Fig. 2.
We give now an intuition of the other rules in Fig. 2. Rule (skip) does not modify the conclusion

since no operations are involved. In addition, monotonicity trivially holds on any variable when

either there is no input to consider (rule (empty𝑖𝑛)), or the program 𝑃 does not modify any variables

of 𝑉 . This last condition is stated by rule (empty𝑣𝑎𝑟 ) where 𝐴𝑠𝑠𝑖𝑔𝑛(𝑃) represents the set of all
variables that appear on the left side of an assignment in 𝑃 .

(weaken) observes that the non-decreasing program property of 𝑃 can be soundly weakened

by restricting the set of input states at which monotonicity is asserted. Note that the weakening

rule is only possible on the input states and not on the set of variables 𝑉 otherwise it may lead to

unsound derivations. For instance, the program 𝑃 in Example 3.2 is {𝑥,𝑦, 𝑧}-non-decreasing but
not {𝑥, 𝑧}-non-decreasing. Furthermore, observe that (weaken) does not require any convexity

assumption on the weaker set 𝑆 ′: whenever we can prove monotonicity on 𝑆 , then we are sure that

any pair of states in 𝑆 satisfies Definition 3.1, and, therefore, any subset 𝑆 ′ of 𝑆 . This fact turns out
useful, e.g., when we want to prove non-decreasing an assignment over a non-convex set 𝑆 ′: we
may deduce first that the assignment is non-decreasing over a convex overapproximation 𝑆 , i.e.,

such that 𝑆 ′ ⊆ 𝑆 ∧𝐶𝑜𝑛𝑣 (𝑆), through the rule (assign), and then apply (weaken) to come back to

the non-convex set 𝑆 ′.
The rule (seq) addresses sequential composition of programs. In domain theory (see, e.g., [Scott

and Strachey 1971]), it is well known that the composition of two monotonically non-decreasing

mappings 𝑓 : ⟨𝐿1, ≤𝐿1⟩ → ⟨𝐿2, ≤𝐿2⟩ and 𝑔 : ⟨𝐿2, ≤𝐿2⟩ → ⟨𝐿3, ≤𝐿3⟩, gives as result a non-decreasing
function 𝑔 ◦ 𝑓 : ⟨𝐿1, ≤𝐿1⟩ → ⟨𝐿3, ≤𝐿3⟩. Here the result is similar, the only condition to verify is that

all the output states of 𝑃1 on input 𝑆1 satisfy 𝑆2, namely J𝑃1K𝑆1 ⊆ 𝑆2. This condition is formalized in

the premise of (seq) as the Hoare triple [Hoare 1969] {𝑆1}𝑃1{𝑆2}. If these premises are true, then we

can safely conclude that the composition 𝑃1; 𝑃2 is 𝑉 -non-decreasing at all input states satisfying 𝑆1.

Example 3.4. Consider the program 𝑃 = 𝑃1; 𝑃2; 𝑃3 over R3
made by composing 𝑃1 : 𝑥 := 𝑥2 + 𝑦2,

𝑃2 : 𝑦 := 2𝑦 and 𝑃3 : 𝑧 := 𝑥 + 𝑦. We want to prove that 𝑃 is {𝑥,𝑦, 𝑧}-non-decreasing over all states
𝑆 = {(𝑥,𝑦, 𝑧) | ((0 ≤ 𝑥 ≤ 1) ∧ (0 ≤ 𝑦 ≤ 1)) ∨ ((1 ≤ 𝑥 ≤ 2) ∧ (1 ≤ 𝑦 ≤ 2))} by deriving the

judgment 𝑀𝑜𝑛↗ (𝑃, 𝑆, {𝑥,𝑦, 𝑧}). The set 𝑆 , when represented into two dimensions R2
(𝑥 and 𝑦),

depicts two squares intersecting at the point (1, 1). Clearly, 𝑆 is not convex. Let us consider the set

𝑆 = {(𝑥,𝑦, 𝑧) | (0 ≤ 𝑥 ≤ 2) ∧ (0 ≤ 𝑦 ≤ 2)} which in two dimensions represents a square containing

the two squares of 𝑆 , thus 𝑆 ⊆ 𝑆 and 𝑆 is convex.

Let us start by analyzing 𝑃1. We have seen in Example 3.3 that the function L𝑥2 + 𝑦2 M is non-
decreasing on sets satisfying 𝑥 ≥ 0 ∧ 𝑦 ≥ 0. Since all the states in the convex set 𝑆 satisfy also
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𝑆 ⇒ 𝑏 𝑀𝑜𝑛↗ (𝑃1, 𝑆,𝑉 )
𝑀𝑜𝑛↗ (if 𝑏 then 𝑃1 else 𝑃2, 𝑆,𝑉 ) (if𝑡𝑟𝑢𝑒 )

𝑆 ⇒ ¬𝑏 𝑀𝑜𝑛↗ (𝑃2, 𝑆,𝑉 )
𝑀𝑜𝑛↗ (if 𝑏 then 𝑃1 else 𝑃2, 𝑆,𝑉 )

(if𝑓𝑎𝑙𝑠𝑒 )

𝑀𝑜𝑛↗ (𝑃1, 𝑆 ∧ (𝑏 ∨ B(𝑏)),𝑉 ) 𝑀𝑜𝑛↗ (𝑃2, 𝑆 ∧ (¬𝑏 ∨ B(𝑏)),𝑉 ) Boundary(𝑆 ∧ B(𝑏),𝑉 , 𝑃1, 𝑃2)
𝑀𝑜𝑛↗ (if 𝑏 then 𝑃1 else 𝑃2, 𝑆,𝑉 ) (if)

Fig. 3. Verifying the non-decreasing program property of if-statements.

𝑥 ≥ 0 ∧ 𝑦 ≥ 0, we can apply rule (assign) for 𝑃1 and derive 𝑀𝑜𝑛↗ (𝑥 := 𝑥2 + 𝑦2, 𝑆, {𝑥,𝑦, 𝑧}).
The expression 2𝑦 of 𝑃2 is non-decreasing at any inputs, therefore by (assign) we can derive

the judgment 𝑀𝑜𝑛↗ (𝑦 := 2𝑦, 𝑡𝑟𝑢𝑒, {𝑥,𝑦, 𝑧}). As the Hoare triple {𝑆}𝑃1{𝑡𝑟𝑢𝑒} trivially holds, by

applying rule (seq) on the first two programs we obtain 𝑀𝑜𝑛↗ (𝑃1; 𝑃2, 𝑆, {𝑥,𝑦, 𝑧}). The function
L𝑥 + 𝑦 M of program 𝑃3 represents a non-decreasing plane over R3

. 𝑃3 uses only variables in {𝑥,𝑦, 𝑧}
and it is clearly non-decreasing as ∇L𝑥 + 𝑦 M = (1, 1)𝑇 . Therefore, by (assign), we can safely

derive𝑀𝑜𝑛↗ (𝑧 := 𝑥 + 𝑦, 𝑡𝑟𝑢𝑒, {𝑥,𝑦, 𝑧}). Again, with rule (seq) we join the program 𝑃1; 𝑃2 with 𝑃3

by deriving 𝑀𝑜𝑛↗ (𝑃1; 𝑃2; 𝑃3, 𝑆, {𝑥,𝑦, 𝑧}). Finally, as 𝑆 ⊆ 𝑆 , rule (weaken) concludes the overall
derivation of 𝑃 for the non-convex set 𝑆 :𝑀𝑜𝑛↗ (𝑃1; 𝑃2; 𝑃3, 𝑆, {𝑥,𝑦, 𝑧}). ♦

3.3 If-branches
Challenges arise when programs contain if-statements or loops. In fact, similar to the analysis of

program continuity [Chaudhuri et al. 2010] and differentiability [Beck and Fischer 1994], the main

source of non-monotone behaviors are branches.

Let us start by analyzing the if-statement if 𝑏 then 𝑃1 else 𝑃2. The trivial cases here correspond to
guards 𝑏 that are always satisfied (resp. not satisfied) by the considered input states 𝑆 , i.e., J𝑏K𝑆 = 𝑆

(resp. J𝑏K𝑆 = ∅): the conclusion is the analysis of 𝑃1 (resp. 𝑃2). This is formalized by rule (iftrue)
(resp. (iffalse)) of Fig. 3. By considering now the non-trivial cases (J𝑏K𝑆 ≠ 𝑆 ∧ J𝑏K𝑆 ≠ ∅), we would
like to prove the 𝑉 -non-decreasing property of if 𝑏 then 𝑃1 else 𝑃2 provided that both 𝑃1 and 𝑃2
are 𝑉 -non-decreasing. Unfortunately, these assumptions are not sufficient to guarantee the overall

monotonicity of the if-statement. This is because two comparable states could flow along different

branches, potentially resulting in non-monotone behavior.

Example 3.5. Consider the following program

𝑃 : if 𝑥 + 𝑦 − 2 ≤ 0 ∨ 2𝑥 + 𝑦 − 3 ≤ 0 then 𝑦 := 𝑥 + 10 else 𝑥 := 𝑥2 + 3

If we consider all inputs having 𝑥 ≥ 0, then both paths lead to non-decreasing programs: 𝑥 := 𝑥2 + 3
is {𝑥,𝑦}-non-decreasing for all 𝑥 ≥ 0, and 𝑦 := 𝑥 + 10 is always {𝑥,𝑦}-non-decreasing. The question
is: because both branches are {𝑥,𝑦}-non-decreasing on all states R2

satisfying 𝑥 ≥ 0, can we

also conclude that 𝑃 is {𝑥,𝑦}-non-decreasing over all states R2
satisfying 𝑥 ≥ 0? Consider two

comparable input states 𝜎1 = (0, 0) and 𝜎2 = (2, 2) such that 𝜎1 ≤{𝑥,𝑦} 𝜎2. Then, if 𝑃 is {𝑥,𝑦}-non-
decreasing, we would expect that J𝑃K𝜎1 ≤{𝑥,𝑦} J𝑃K𝜎2. But this is not true, as J𝑃K𝜎1 = (0, 10) ≰{𝑥,𝑦}

(7, 2) = J𝑃K𝜎2. Note that 𝜎1 follows the then branch while 𝜎2 follows the else branch. ♦

The optimal approach here would involve verifying that comparable states following different

branches, do not violate monotonicity, i.e., ∀𝜎1, 𝜎2 such that 𝜎1 ≤𝑉 𝜎2 and J𝑏K𝜎1 = 𝜎1 ∧ J𝑏K𝜎2 = ∅
(resp. J𝑏K𝜎1 = ∅ ∧ J𝑏K𝜎2 = 𝜎2) it must hold that J𝑃1K𝜎1 ≤𝑉 J𝑃2K𝜎2 (resp. J𝑃2K𝜎1 ≤𝑉 J𝑃1K𝜎2). This
checking phase can be simplified when the guard 𝑏 is a positive linear guard: all Boolean predicates

occurring in 𝑏 either have the form 𝑒 ⋖ 0 or they all have the form 𝑒 ⋗ 0, and 𝑒 = 0 is a positive
linear equation, i.e., the expression 𝑒 can be written as 𝑒 =

∑ |Var (𝑒 ) |
𝑖=1

𝑣𝑖𝑥𝑖 + 𝑘 with 𝑣 ∈ I≥0, 𝑘 ∈ I.
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Fig. 4. Representation of the disjunction of the Boolean guard 𝑥 + 𝑦 − 2 ≤ 0, in red, and 2𝑥 + 𝑦 − 3 ≤ 0, in
blue, of Example 3.5. All states satisfying the guard are in the green region, while the white area contains the
states that do not satisfy the Boolean guard.

Example 3.6. The guard 𝑥 +𝑦 − 2 ≤ 0∨ 2𝑥 +𝑦 − 3 ≤ 0 of Example 3.5 is positive linear because it

is a disjunction of two predicates, 𝑥 +𝑦 − 2 ≤ 0 and 2𝑥 +𝑦 − 3 ≤ 0, both having the same inequality,

namely ⋖, and the equations 𝑥 + 𝑦 − 2 = 0 and 2𝑥 + 𝑦 − 3 = 0 are positive linear, both representing

a non-increasing line in R2
. ♦

Let 𝐿𝑖𝑛+
⋖, 𝐿𝑖𝑛

+
⋗ be the sets of all, respectively, positive linear guards having only predicates ⋖,

positive linear guards having only predicates ⋗, and let 𝐿𝑖𝑛+ def
= 𝐿𝑖𝑛+

⋖ ∪ 𝐿𝑖𝑛+
⋗. Then the following

topological properties are satisfied for all 𝑏 ∈ 𝐿𝑖𝑛+
:

(1) the guard 𝑏 divides the Euclidean space I |Var (𝑃 ) | in two regions: one region populated by states

that satisfy 𝑏 and the other region populated by states that satisfy ¬𝑏;
(2) if 𝑏 ∈ 𝐿𝑖𝑛+

⋖ (resp. 𝑏 ∈ 𝐿𝑖𝑛+
⋗) then every state that makes 𝑏 true is either less or equal (resp.

greater or equal) or not comparable for variables Var (𝑃) with respect to the states that do not

satisfy 𝑏, i.e., ∀𝜎1, 𝜎2: if J𝑏K𝜎1 = 𝜎1 ∧ J𝑏K𝜎2 = ∅ then either 𝜎1 ≤Var (𝑃 ) 𝜎2 (resp. 𝜎1 ≥Var (𝑃 ) 𝜎2),
or 𝜎1 and 𝜎2 are not comparable.

Example 3.7. The graphical representation of 𝑥 +𝑦 − 2 ≤ 0∨ 2𝑥 +𝑦 − 3 ≤ 0 ∈ 𝐿𝑖𝑛+
⋖ of Example 3.5

is depicted in Fig. 4. By selecting any two states 𝜎1, 𝜎2 such that 𝜎1 is in the green area (i.e., satisfying

the guard) while 𝜎2 is in the white area (i.e., not satisfying the guard), we can be certain that either

𝜎1 ≤{𝑥,𝑦} 𝜎2 or they are not comparable, in other words, it is never the case that 𝜎2 is less than 𝜎1. ♦

In this scenario, provided that 𝑃1 and 𝑃2 are 𝑉 -non-decreasing, in order to conclude the overall

monotonicity of if 𝑏 then 𝑃1 else 𝑃2, it is sufficient to check the behavior of branches 𝑃1 and 𝑃2 at

boundary states. Given 𝑏 ∈ 𝐿𝑖𝑛+
we formally define the set B(𝑏) of boundary states as follows:

B(𝑏) def
=

{
𝑒 = 0 if 𝑏 = 𝑒 ⋖ 0 or 𝑏 = 𝑒 ⋗ 0,

B(𝑏1) ∨ B(𝑏2) if 𝑏 = 𝑏1 ∨ 𝑏2 or 𝑏 = 𝑏1 ∧ 𝑏2.

Note that B(𝑏) represents an overapproximation of the true boundary states of 𝑏.

Example 3.8. By considering again Example 3.5, the boundary states here areB(𝑥+𝑦−2 ≤ 0∨2𝑥+
𝑦−3 ≤ 0) = 𝑥+𝑦−2 = 0∨2𝑥+𝑦−3 = 0 , namely, the set of points {(𝑥,𝑦) | 𝑥+𝑦−2 = 0∨ 2𝑥+𝑦−3 = 0}
solving either the equation 𝑥 + 𝑦 − 2 = 0 or the equation 2𝑥 + 𝑦 − 3 = 0. Note that this set contains

more states than those actually on the guard 𝑥 + 𝑦 − 2 = 0 ∨ 2𝑥 + 𝑦 − 3 = 0 (the states on the blue

and red lines of Fig. 4). ♦
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Rule (if) contains all the necessary pre-conditions for proving the non-decreasing behavior of if-

statements. Firstly, we have to prove that 𝑃1 is𝑉 -non-decreasing at all states satisfying 𝑆∧(𝑏∨B(𝑏)),
namely, the set of all program states in 𝑆 that either satisfy 𝑏 or are boundary states. The same

applies for program 𝑃2 at states 𝑆 ∧ (¬𝑏 ∨ B(𝑏)). Finally, for the case 𝑏 ∈ 𝐿𝑖𝑛+
⋖, it is sufficient to

check that the result of the computation of the true-branch 𝑃1 cannot exceed the result of the

computation along the false-branch 𝑃2 on boundary states that are also in 𝑆 , i.e., it must hold

∀𝜎 ∈ 𝑆 ∧ B(𝑏) : J𝑃1K𝜎 ≤𝑉 J𝑃2K𝜎 . This condition is encoded by the following predicate:

Boundary(𝑆 ∧ B(𝑏),𝑉 , 𝑃1, 𝑃2)
def
⇔

𝑏 ∈ 𝐿𝑖𝑛+
⋖ ∧ ∀𝜎 ∈ 𝑆 ∧ B(𝑏). J𝑃1K𝜎 ≤𝑉 J𝑃2K𝜎

∨
𝑏 ∈ 𝐿𝑖𝑛+

⋗ ∧ ∀𝜎 ∈ 𝑆 ∧ B(𝑏). J𝑃1K𝜎 ≥𝑉 J𝑃2K𝜎

Note that the predicate Boundary treats also the case of 𝑏 ∈ 𝐿𝑖𝑛+
⋗: in this scenario, the execution of

𝑃2 must not exceed 𝑃1 on all states 𝜎 ∈ 𝑆 ∧ B(𝑏). This is the intuition behind rule (if) on Fig. 3.

Practically, checking the above predicate could be done automatically by exploiting, e.g., a static

analyzer based on abstract interpretation (e.g., [Cousot et al. 2005]).

Example 3.9. By using the rules presented in this section, we can prove that the program

ReLU : if 𝑥 ≤ 0 then 𝑥 := 0 else 𝑥 := 𝑥 is {𝑥}-non-decreasing at all inputs R. Clearly, the guard
is positive linear 𝑥 ≤ 0 ∈ 𝐿𝑖𝑛+

⋖. The boundary state is B(𝑥 ≤ 0) = 𝑥 = 0, namely, the store

𝜎̂ (𝑥) = 0, thus 𝑡𝑟𝑢𝑒 ∧ (𝑥 ≤ 0 ∨ 𝑥 = 0) can be simplified into 𝑥 ≤ 0, and 𝑡𝑟𝑢𝑒 ∧ (𝑥 > 0 ∨ 𝑥 = 0) into
𝑥 ≥ 0. By applying rule (assign) to the true-branch and false-branch we can derive, respectively,

𝑀𝑜𝑛↗ (𝑥 := 0, 𝑥 ≤ 0, {𝑥}) and 𝑀𝑜𝑛↗ (𝑥 := 𝑥, 𝑥 ≥ 0, {𝑥}). Moreover, the predicate Boundary(𝑥 =

0, {𝑥}, 𝑥 := 0, 𝑥 := 𝑥) holds, indeed J𝑥 := 0K𝜎̂ = 𝜎̂ ≤ 𝜎̂ = J𝑥 := 𝑥K𝜎̂ . Hence, we can apply rule

(if) and derive 𝑀𝑜𝑛↗ (if 𝑥 ≤ 0 then 𝑥 := 0 else 𝑥 := 𝑥, 𝑡𝑟𝑢𝑒, {𝑥}), proving that ReLU is {𝑥}-non-
decreasing. Intuitively, by proving that Boundary(𝑥 = 0, {𝑥}, 𝑥 := 0, 𝑥 := 𝑥) holds, together with
𝑀𝑜𝑛↗ (𝑥 := 0, 𝑥 ≤ 0, {𝑥}) and 𝑀𝑜𝑛↗ (𝑥 := 𝑥, 𝑥 ≥ 0, {𝑥}), guarantee that it is never the case that
JReLUK𝜎1 > JReLUK𝜎2 starting from two stores 𝜎1 ≤ 𝜎2 that follows different branches. Indeed,

since 𝜎1 ≤ 𝜎̂ ≤ 𝜎2 and both 𝑀𝑜𝑛↗ (𝑥 := 0, 𝑥 ≤ 0, {𝑥}) and 𝑀𝑜𝑛↗ (𝑥 := 𝑥, 𝑥 ≥ 0, {𝑥}) hold, we are
sure that JReLUK𝜎1 ≤ JReLUK𝜎̂ ≤ JReLUK𝜎2, therefore we can conclude JReLUK𝜎1 ≤ JReLUK𝜎2. ♦

Example 3.10. We have already seen that the if-program 𝑃 in Example 3.5 is not {𝑥,𝑦}-non-
decreasing on 𝑥 ≥ 0. Here the predicate Boundary(𝑥 ≥ 0 ∧ B(𝑏), {𝑥,𝑦}, 𝑦 := 𝑥 + 10, 𝑥 := 𝑥2 + 3),
where 𝑏 is the guard of the if-statement, is false because the value of variable 𝑦 grows faster

when executing 𝑃1 rather than when executing 𝑃2: consider for instance the boundary state (1, 1),
J𝑃1K(1, 1) = (1, 11) ≰{𝑥,𝑦} (4, 1) = J𝑃2K(1, 1). However, we can prove that 𝑃 is {𝑥}-non-decreasing
for all inputs 𝑆 = {(𝑥,𝑦) | 0 ≤ 𝑥 ≤ 10 ∧ 𝑦 ≥ 0} over R2

. Let us construct the proof with

our proof system. The condition 𝑆 ∧ (𝑏 ∨ B(𝑏)) can be simplified into 𝑆 ∧ 𝑏 since 𝑏 already

includes the boundary states. For the true-branch, since 𝑦 ∉ {𝑥}, we apply (empty𝑣𝑎𝑟 ) and derive

𝑀𝑜𝑛↗ (𝑦 := 𝑥 +10, 𝑆∧𝑏, {𝑥}). For the false-branch, as both the predicates𝐶𝑜𝑛𝑣 (𝑆∧(¬𝑏∨B(𝑏))) and
𝑆∧(¬𝑏∨B(𝑏)) ⇒ ∇L𝑥2 + 3M = 2𝑥 ≥ 0 holds, we can derive𝑀𝑜𝑛↗ (𝑥 := 𝑥2+3, 𝑆∧(¬𝑏∨B(𝑏)), {𝑥})
by applying (assign). The guard is positive linear, therefore the only remaining assumption to verify

is the non-deceasing property on boundary states, namely: Boundary(𝑆∧B(𝑏), {𝑥}, 𝑦 := 𝑥 +10, 𝑥 :=

𝑥2 + 3). This final predicate can also be checked with the assistance of an abstract interpreter

J·KInt on the abstract domain of intervals Int where the abstract sum +Int between two intervals

is defined as [𝑎, 𝑏] +Int [𝑐, 𝑑]
def
= [𝑎 + 𝑐, 𝑏 + 𝑑] while the abstract multiplication ×Int is defined as

[𝑎, 𝑏] ×Int [𝑐, 𝑑]
def
= [min({𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑}),max({𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑})]. The set of states satisfying 𝑆∧B(𝑏)

can be overapproximated by the abstract state ( [0, 2], [0, 3]) ∈ Int2 which corresponds to all the

program states {𝜎 ∈ R2 | 𝜎 (𝑥) ∈ [0, 2] ∧ 𝜎 (𝑦) ∈ [0, 3]}. Then by running both branches on the
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𝑆 ⇒ ¬𝑏
𝑀𝑜𝑛↗ (while 𝑏 do 𝑅, 𝑆,𝑉 )

(while𝑓𝑎𝑙𝑠𝑒 )
{𝐼 ∧ 𝑏}𝑅{𝐼 } 𝑀𝑜𝑛↗ (𝑅, 𝐼 ∧ 𝑏,𝑉 ) Limit (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 )

𝑀𝑜𝑛↗ (while 𝑏 do 𝑅, 𝑆,𝑉 ) (while)

Fig. 5. Verifying the non-decreasing program property of while-loops.

abstract interpreter, we get:

J𝑃1KInt ( [0, 2], [0, 3]) = ( [0, 2], [10, 12]) ≤{𝑥 }
Int ( [3, 7], [0, 3]) = J𝑃2KInt ( [0, 2], [0, 3])

where ≤{𝑥 }
Int , as for the concrete stores, indicates that we are comparing the 𝑥-component only. Since

the two intervals [0, 2] ≤Int [3, 7] are not overlapping, we are sure that the values of 𝑥 on boundary

states after executing 𝑃1 are always less than the values of 𝑥 after executing 𝑃2. This means that

the predicate Boundary(𝑆 ∧ B(𝑏), {𝑥}, 𝑦 := 𝑥 + 10, 𝑥 := 𝑥2 + 3) holds. We can conclude by rule

(if): 𝑀𝑜𝑛↗ (𝑃, 0 ≤ 𝑥 ≤ 10 ∧ 𝑦 ≥ 0, {𝑥}) thus ensuring that variable 𝑥 is computed monotonically

non-decreasing by the if-statement along all states in 𝑆 . ♦

3.4 Loops
Similar to if-statements, loops can easily break the monotonicity property, even when the loop body

is monotone. This is because, given two comparable states 𝜎 ≤𝑉 𝜎 ′
, an execution starting from

𝜎 may terminate earlier or later than the one starting from 𝜎 ′
, resulting in a potentially different

outcome.

Example 3.11. Let us consider, for example, the while-loop while 𝑥 < 3 do 𝑥 := 𝑥 + 2. Although

the assignment 𝑥 := 𝑥 + 2 is inherently non-decreasing for any input, the overall loop does not

preserve the non-decreasing property. In fact, when the input is 0, the loop terminates after two

iterations, whereas for input 1, it only requires one iteration to terminate. As a result, at the end of

the execution, the program with input 0 surpasses the execution with input 1:

Jwhile 𝑥 < 3 do 𝑥 := 𝑥 + 2K(0) = 4 ≰ 3 = Jwhile 𝑥 < 3 do 𝑥 := 𝑥 + 2K(1). ♦

Since each iteration of while 𝑏 do 𝑅 can be viewed as an execution of if 𝑏 then 𝑅 else skip,
when guards are positive linear we may think that the monotonicity of loops could be proved

by employing the technique of the (if) rule. Regrettably, although sound, the use of boundary

states B(𝑏) on loops is too weak as it fails to establish the monotonicity even for simple loops like

while 𝑥 < 0 do 𝑥 := 𝑥 + 1. Indeed, for this example, requiring J𝑥 = 𝑥 + 1K(0) ≤ JskipK(0) for the
boundary state 𝑥 = 0, is equivalent to demanding that the loop body does not modify variable 𝑥 .

For this reason, we need to refine the definition of boundary states for loops: instead of considering

a set of states, we now consider a set of pairs of states (𝜎1, 𝜎2), which we refer to as limit states.
Intuitively, in the case of 𝑏 ∈ 𝐿𝑖𝑛+

⋖, the states (𝜎1, 𝜎2) are limit states for the while-loopwhile 𝑏 do 𝑅,
when 𝜎1 enters the loop, 𝜎2 does not enter the loop and 𝜎1 ≤𝑉 𝜎2. We generalize this reasoning by

defining the following two sets based on a program 𝑃 , set of inputs 𝑆 , variables 𝑉 and, respectively,

𝑏 ∈ 𝐿𝑖𝑛+
⋖ and 𝑏 ∈ 𝐿𝑖𝑛+

⋗:

L⋖ (𝑏, 𝑃, 𝑆,𝑉 ) def
= {(𝜎1, 𝜎2) | 𝜎1 ∈ 𝑆 ∧ 𝑏, 𝜎2 ∈ 𝑆 ∧ ¬𝑏, 𝜎1 ≤𝑉 𝜎2}

L⋗ (𝑏, 𝑃, 𝑆,𝑉 ) def
= {(𝜎1, 𝜎2) | 𝜎1 ∈ 𝑆 ∧ ¬𝑏, 𝜎2 ∈ 𝑆 ∧ 𝑏, 𝜎1 ≤𝑉 𝜎2}

Given a while-loop while 𝑏 do 𝑅 such that 𝑏 ∈ 𝐿𝑖𝑛+
⋖, a set of input states 𝑆 , set of variables𝑉 , and a

loop invariant 𝐼 , the set of pairs of states L⋖ (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ) identifies our intuition of limit states.

In this case, when 𝑏 ∈ 𝐿𝑖𝑛+
⋖, in order to conclude the overall non-decreasing behavior of the loop,

we need to verify two conditions: (1) the loop body 𝑅 must be 𝑉 -non-decreasing on 𝐼 ∧ 𝑏, and (2)
for every pair of limit states (𝜎1, 𝜎2) ∈ L⋖ (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ), the execution of 𝑅 with input the state
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𝜎1 must not exceed 𝜎2, namely it must hold that J𝑅K𝜎1 ≤𝑉 𝜎2. These two conditions will ensure

that, starting from two comparable stores 𝜎 ≤ 𝜎 ′
entering the loop, each execution of the body 𝑅

will not alter their order and, even if at some point, e.g., at the 𝑛-th iteration, J𝑅𝑛K𝜎 ′
exits the loop,

where 𝑅𝑛 is the sequential composition of 𝑅 𝑛-times, the successive iteration of 𝜎 until it exists the

loop, will not break the order. The condition (2) and its dual case when 𝑏 ∈ 𝐿𝑖𝑛+
⋗, are treated by the

following predicate:

Limit (𝑏, 𝑃, 𝑆,𝑉 )
def
⇔

𝑏 ∈ 𝐿𝑖𝑛+
⋖ ∧ ∀(𝜎1, 𝜎2) ∈ L⋖ (𝑏, 𝑃, 𝑆,𝑉 ) . J𝑃K𝜎1 ≤𝑉 𝜎2

∨
𝑏 ∈ 𝐿𝑖𝑛+

⋗ ∧ ∀(𝜎1, 𝜎2) ∈ L⋗ (𝑏, 𝑃, 𝑆,𝑉 ). 𝜎1 ≤𝑉 J𝑃K𝜎2

This is the intuition underlying rule (while) in Fig. 5. The premise {𝐼 ∧ 𝑏}𝑅{𝐼 } corresponds to the

Hoare triple which states that 𝐼 is a loop invariant. Abstract interpretation can be employed to

automatically detect a sound invariant. Rule (while𝑓 𝑎𝑙𝑠𝑒 ) addresses the straightforward scenario

where none of the states in 𝑆 enter the loop. Practically, checking the validity of the predicate

Limit (𝑏, 𝑃, 𝑆,𝑉 ), can be semi-automated by using modern automatic theorem provers or SMT

solvers.

Example 3.12. Consider the program ReLU
𝑤 def

= while 𝑥 < 0 do 𝑥 := 𝑥 + 1 which implements

the ReLU function on integers by using a while-loop instead of an if-statement. Clearly, as ReLU
𝑤

is semantically equivalent to the ReLU program of Example 3.9 on integer inputs, ReLU
𝑤
is non-

decreasing over Z. We want to prove it by exploiting rule (while) of our proof system. Let us

consider the invariant 𝐼 : 𝑥 ≤ 0. By rule (assign), we first prove that the loop body is non-

decreasing: 𝑀𝑜𝑛↗ (𝑥 := 𝑥 + 1, 𝑥 < 0, {𝑥}). Since 𝑥 < 0 ∈ 𝐿𝑖𝑛+
⋖, the set of all pair of limit states

is L⋖ (𝑥 < 0, 𝑥 := 𝑥 + 1,Z, {𝑥}) = {(𝑚,𝑛) | 𝑚,𝑛 ∈ Z ∧ 𝑚 < 0 ∧ 𝑛 ≥ 0}. Then, clearly, for
all (𝑚,𝑛) ∈ L⋖ (𝑥 < 0, 𝑥 := 𝑥 + 1,Z, {𝑥}), J𝑥 := 𝑥 + 1K(𝑚) ≤ 𝑛 holds, therefore the predicate

Limit (𝑥 < 0, 𝑥 := 𝑥 + 1,Z, {𝑥}) is true. All the premises are satisfied and rule (while) concludes
𝑀𝑜𝑛↗ (ReLU𝑤, 𝑡𝑟𝑢𝑒, {𝑥}). ♦

Example 3.13. Let us consider the program Fact that calculates the factorial of a natural number

𝑥 ∈ N and stores the result in the variable 𝑓 :

Fact : 𝑖 := 1; 𝑓 := 1; while 𝑖 − 𝑥 ≤ 0 do 𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1

Let the triple 𝜎 = (𝑥, 𝑖, 𝑓 ) represents a program state of Fact, we want to prove that Fact is

monotonically non-decreasing on all its variables at all input states satisfying the loop invariant

𝐼 = {(𝑥, 𝑖, 𝑓 ) | 𝑓 = (𝑖 − 1)!} where 𝑛! def
= 𝑛 ∗ (𝑛− 1) ∗ · · · ∗ 1 is the mathematical definition of factorial

for 𝑛 ∈ N. For the first two assignments before the loop, it is easy to derive 𝑀𝑜𝑛↗ (𝑖 := 1; 𝑓 :=

1, 𝑡𝑟𝑢𝑒, {𝑥, 𝑖, 𝑓 }) by rules (assign) and (seq). Then, by rule (weaken), we soundly restrict the set of

input states to the set 𝐼 :𝑀𝑜𝑛↗ (𝑖 := 1; 𝑓 := 1, 𝐼 , {𝑥, 𝑖, 𝑓 }). Let us now analyze the while-loop. Note that

𝐼 is a loop invariant, indeed it is easy to verify that the Hoare triple {𝐼∧(𝑖 ≤ 𝑥)}𝑓 := 𝑓 ∗𝑖; 𝑖 := 𝑖+1{𝐼 }
holds. As we are working on natural numbers and both assignments of the body of the loop are non-

decreasing over N3
, we can easily infer𝑀𝑜𝑛↗ (𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1, 𝑡𝑟𝑢𝑒, {𝑥, 𝑖, 𝑓 }) by rules (assign)

and (seq). Further, we use rule (weaken) to derive𝑀𝑜𝑛↗ (𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1, 𝐼 ∧ (𝑖 ≤ 𝑥), {𝑥, 𝑖, 𝑓 }),
as 𝐼 ∧ (𝑖 ≤ 𝑥) ⇒ 𝑡𝑟𝑢𝑒 trivially holds. Since the guard 𝑖 − 𝑥 ≤ 0 ∈ 𝐿𝑖𝑛+

⋖, it remains to check

whether the predicate Limit (𝑖 − 𝑥 ≤ 0, 𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1, 𝐼 , {𝑥, 𝑖, 𝑓 }) holds or not for the limit

states. Given a pair of limit states (𝜎1, 𝜎2) ∈ L⋖ (𝑖 − 𝑥 ≤ 0, 𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1, 𝐼 , {𝑥, 𝑖, 𝑓 }),
we know that: 𝜎1 ≤ 𝜎2, 𝜎1 ∈ {(𝑥, 𝑖, 𝑓 ) | 𝐼 ∧ (𝑖 ≤ 𝑥)} and 𝜎2 ∈ 𝐼 ∧ (𝑖 > 𝑥). Then, clearly
J𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1K𝜎1 ≤ 𝜎2 holds for all pair of limit states since a further execution of the loop

body on 𝜎1 cannot exceed 𝜎2. Thanks to the validity of the premises, by rule (while) we can derive
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𝑀𝑜𝑛↗ (while 𝑖 − 𝑥 ≤ 0 do 𝑓 := 𝑓 ∗ 𝑖; 𝑖 := 𝑖 + 1, 𝐼 , {𝑥, 𝑖, 𝑓 }). Finally, with rule (seq) we combine

𝑀𝑜𝑛↗ (𝑖 := 1; 𝑓 := 1, 𝐼 , {𝑥, 𝑖, 𝑓 }) with this last derivation, and conclude𝑀𝑜𝑛↗ (Fact, 𝐼 , {𝑥, 𝑖, 𝑓 }). ♦

The proof system specified by the rules in Fig. 2, 3 and 5, is sound, as stated by the following

theorem.

Theorem 3.14. ⊢𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ) ⇒ 𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ).

Proof. (skip): Since Dskip = I𝑛 , for any 𝜎1, 𝜎2 ∈ 𝑆 such that 𝜎1 ≤𝑉 𝜎2, we get JskipK𝜎1 = 𝜎1 ≤𝑉

𝜎2 = JskipK𝜎2, therefore𝑀𝑜𝑛↗ (skip, 𝑆,𝑉 ) holds for any 𝑆 ⊆ I𝑛 and 𝑉 ⊆ Var .
(empty𝑖𝑛): 𝑆 is 𝑓𝑎𝑙𝑠𝑒 is equivalent to the emptyset of states 𝑆 = ∅. The monotonicity condition is

trivially satisfied as there are no states to check, therefore𝑀𝑜𝑛↗ (𝑃, 𝑓𝑎𝑙𝑠𝑒,𝑉 ) holds for all 𝑃 ∈ Prog
and 𝑉 ∈ Var .
(empty𝑣𝑎𝑟 ): Assume 𝐴𝑠𝑠𝑖𝑔𝑛(𝑃) ∩ 𝑉 = ∅, namely either 𝑃 does not modify any variable in 𝑉

or 𝑉 = ∅. In the first case, for every 𝜎1, 𝜎2 ∈ 𝑆 ∩ D𝑃 and for every 𝑥 ∈ Var (𝑃) ∩ 𝑉 such that

𝜎1 (𝑥) ≤ 𝜎2 (𝑥) we get (J𝑃K𝜎1) (𝑥) = (J𝑃K𝜎2) (𝑥), i.e.,𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ) holds, while if𝑉 = ∅ then there

are no variables to check monotonicity, therefore the program is monotone for all 𝑆 ⊆ I𝑛 .

(assign): D𝑥 :=𝑒 = I |Var (𝑥 :=𝑒 ) | since every assignment command is always terminating. Assume

Var (𝑒) ⊆ 𝑉 , 𝐶𝑜𝑛𝑣 (𝑆), 𝑆 ⇒ ∇L𝑒 M ≥ 0 |Var (𝑒 ) |×1 and consider any 𝜎1, 𝜎2 ∈ 𝑆 such that 𝜎1 ≤𝑉 𝜎2.

Then, we get the following implications:

𝑆 ⇒ ∇L𝑒 M ≥ 0 |Var (𝑒 ) |×1 ⇒ [by 𝜎1, 𝜎2 ∈ 𝑆]

∇L𝑒 M𝜎1 ≥ 0 |Var (𝑒 ) |×1 ∧ ∇L𝑒 M𝜎2 ≥ 0 |Var (𝑒 ) |×1 ⇒ [by 𝜎1 ≤𝑉 𝜎2, Var (𝑒) ⊆ 𝑉 and 𝐶𝑜𝑛𝑣 (𝑆)]
L𝑒 M𝜎1 ≤ L𝑒 M𝜎2 ⇒ [by Definition of J𝑥 := 𝑒K]

J𝑥 := 𝑒K𝜎1 ≤𝑉 J𝑥 := 𝑒K𝜎2 ⇒ [by Definition 3.1]

𝑀𝑜𝑛↗ (𝑥 := 𝑒, 𝑆,𝑉 )

(weaken): If 𝑆 ′ = 𝑆 then trivially 𝑀𝑜𝑛↗ (𝑃, 𝑆 ′,𝑉 ) holds. Assume 𝑀𝑜𝑛↗ (𝑃, 𝑆,𝑉 ) and 𝑆 ′ ⊂ 𝑆 . By

assumption, the non-decreasing property holds for all states 𝜎1, 𝜎2 ∈ 𝑆 ∩ D𝑃 . Since (𝑆 ′ ∩ D𝑃 ) ⊂
(𝑆 ∩ D𝑃 ), then it must also hold for all states 𝜎1, 𝜎2 ∈ (𝑆 ′ ∩ D𝑃 ), therefore𝑀𝑜𝑛↗ (𝑃, 𝑆 ′,𝑉 ) is true.
(seq): Let us assume 𝑀𝑜𝑛↗ (𝑃1, 𝑆1,𝑉 ), {𝑆1}𝑃1{𝑆2} and 𝑀𝑜𝑛↗ (𝑃2, 𝑆2,𝑉 ). Since D𝑃1;𝑃2 ⊆ D𝑃1 , we

know that (𝑆1 ∩ D𝑃1;𝑃2 ) ⊆ (𝑆1 ∩ D𝑃1 ). Therefore, for all 𝜎1, 𝜎2 ∈ 𝑆1 ∩ D𝑃1;𝑃2 , we get the following

implications:

𝜎1 ≤𝑉 𝜎2 ⇒ [by𝑀𝑜𝑛↗ (𝑃1, 𝑆1,𝑉 )]
J𝑃1K𝜎1 ≤𝑉 J𝑃1K𝜎2 ⇒ [by {𝑆1}𝑃1{𝑆2} and𝑀𝑜𝑛↗ (𝑃2, 𝑆2,𝑉 )]

J𝑃2KJ𝑃1K𝜎1 ≤𝑉 J𝑃2KJ𝑃1K𝜎2 ⇒ [by J𝑃2K ◦ J𝑃1K = J𝑃1; 𝑃2K]

J𝑃1; 𝑃2K𝜎1 ≤𝑉 J𝑃1; 𝑃2K𝜎2 ⇒ [by Definition 3.1]

𝑀𝑜𝑛↗ (𝑃1; 𝑃2, 𝑆1,𝑉 )

(if𝑡𝑟𝑢𝑒 ),(if 𝑓 𝑎𝑙𝑠𝑒 ): Since 𝑆 ⇒ 𝑏 implies that Jif 𝑏 then 𝑃1 else 𝑃2K𝑆 = J𝑃1K𝑆 , then by the assumption

𝑀𝑜𝑛↗ (𝑃1, 𝑆,𝑉 ), we can conclude𝑀𝑜𝑛↗ (if 𝑏 then 𝑃1 else 𝑃2, 𝑆,𝑉 ). A similar reasoning can be used

to prove (if 𝑓 𝑎𝑙𝑠𝑒 ).
(if): We assume the following: 𝑀𝑜𝑛↗ (𝑃1, 𝑆 ∧ (𝑏 ∨ B(𝑏)),𝑉 ), 𝑀𝑜𝑛↗ (𝑃2, 𝑆 ∧ (¬𝑏 ∨ B(𝑏)),𝑉 ) and
Boundary(𝑆 ∧B(𝑏),𝑉 , 𝑃1, 𝑃2). Let us consider the non-trivial case where Var (if 𝑏 then 𝑃1 else 𝑃2) ∩
𝑉 ≠ ∅. Note that we do not care about the case = ∅ as if we are able to prove non-decreasing

the if-statement, the result is still sound (see rule (empty𝑣𝑎𝑟 )). Suppose 𝑏 ∈ 𝐿𝑖𝑛+
⋖ (the case 𝑏 ∈
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𝐿𝑖𝑛+
⋗ is similar). Given 𝜎1, 𝜎2 ∈ 𝑆 ∩ Dif 𝑏 then𝑃1 else𝑃2 such that 𝜎1 ≤𝑉 𝜎2, there are three cases

to verify: (1) J𝑏K{𝜎1, 𝜎2} = {𝜎1, 𝜎2}, (2) J𝑏K{𝜎1, 𝜎2} = ∅, and (3) J𝑏K{𝜎1, 𝜎2} = {𝜎1}. Note that,

since Var (if 𝑏 then 𝑃1 else 𝑃2) ∩ 𝑉 ≠ ∅, 𝑏 ∈ 𝐿𝑖𝑛+
⋖ and 𝜎1 ≤𝑉 𝜎2, it is not feasible for the case

J𝑏K{𝜎1, 𝜎2} = {𝜎2} to occur. We analyze each of them:

(1) case J𝑏K{𝜎1, 𝜎2} = {𝜎1, 𝜎2}: from the assumption 𝜎1, 𝜎2 ∈ 𝑆 ∩ Dif 𝑏 then𝑃1 else𝑃2 and by

J𝑏K{𝜎1, 𝜎2} = {𝜎1, 𝜎2}, we get 𝜎1, 𝜎2 ∈ 𝑆∧(𝑏∨B(𝑏)). Then by𝑀𝑜𝑛↗ (𝑃1, 𝑆∧(𝑏∨B(𝑏)),𝑉 ) and
𝜎1 ≤𝑉 𝜎2, we obtain Jif 𝑏 then 𝑃1 else 𝑃2K𝜎1 = J𝑃1K𝜎1 ≤𝑉 J𝑃1K𝜎2 = Jif 𝑏 then 𝑃1 else 𝑃2K𝜎2;

(2) case J𝑏K{𝜎1, 𝜎2} = ∅: from the assumption𝜎1, 𝜎2 ∈ 𝑆∩Dif 𝑏 then𝑃1 else𝑃2 and by J𝑏K{𝜎1, 𝜎2} = ∅,
we get 𝜎1, 𝜎2 ∈ 𝑆 ∧ (¬𝑏 ∨ B(𝑏)). Then by 𝑀𝑜𝑛↗ (𝑃2, 𝑆 ∧ (¬𝑏 ∨ B(𝑏)),𝑉 ) and 𝜎1 ≤𝑉 𝜎2, we

obtain Jif 𝑏 then 𝑃1 else 𝑃2K𝜎1 = J𝑃2K𝜎1 ≤𝑉 J𝑃2K𝜎2 = Jif 𝑏 then 𝑃1 else 𝑃2K𝜎2;
(3) case J𝑏K{𝜎1, 𝜎2} = {𝜎1}: by Boundary(𝑆 ∧ B(𝑏),𝑉 , 𝑃1, 𝑃2) we know that ∀𝜎 ∈ 𝑆 ∧ B(𝑏):

J𝑃1K𝜎 ≤𝑉 J𝑃2K𝜎 . Moreover, consider a boundary state 𝜎B ∈ 𝑆 ∧ B(𝑏) between 𝜎1 and 𝜎2,

namely such that 𝜎1 ≤𝑉 𝜎B ≤𝑉 𝜎2. Then:

Jif 𝑏 then 𝑃1 else 𝑃2K𝜎1 = [by J𝑏K{𝜎1, 𝜎2} = {𝜎1}]
J𝑃1K𝜎1 ≤𝑉

[by Boundary(𝑆 ∧ B(𝑏),𝑉 , 𝑃1, 𝑃2)]
J𝑃1K𝜎B ≤𝑉

[by Definition of B(𝑏)]
J𝑃2K𝜎B ≤𝑉

[by Boundary(𝑆 ∧ B(𝑏),𝑉 , 𝑃1, 𝑃2)]
J𝑃2K𝜎2 = [by J𝑏K{𝜎1, 𝜎2} = {𝜎1}]

Jif 𝑏 then 𝑃1 else 𝑃2K𝜎2

By the premises of rule (if) we ended Jif 𝑏 then 𝑃1 else 𝑃2K𝜎1 ≤𝑉 Jif 𝑏 then 𝑃1 else 𝑃2K𝜎2 for all
𝜎1, 𝜎2 ∈ 𝑆 ∩ Dif 𝑏 then 𝑃1 else 𝑃2 such that 𝜎1 ≤𝑉 𝜎2, therefore, by Definition 3.1, the predicate

𝑀𝑜𝑛↗ (if 𝑏 then 𝑃1 else 𝑃2, 𝑆,𝑉 ) holds.
(while𝑓 𝑎𝑙𝑠𝑒 ): 𝑆 ⇒ ¬𝑏 implies that Jwhile 𝑏 do 𝑅K𝑆 = 𝑆 , therefore𝑀𝑜𝑛↗ (while 𝑏 do 𝑅, 𝑆,𝑉 ).
(while): Assume {𝐼 ∧ 𝑏}𝑅{𝐼 }, namely 𝐼 is a loop invariant, and both predicates𝑀𝑜𝑛↗ (𝑅, 𝐼 ∧ 𝑏,𝑉 )
and Limit (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ) hold. Furthermore, assume that 𝑏 ∈ 𝐿𝑖𝑛+

⋖ (the case 𝑏 ∈ 𝐿𝑖𝑛+
⋗ is similar).

Given two states 𝜎1, 𝜎2 ∈ 𝑆 ∩ Dwhile 𝑏 do 𝑅 such that 𝜎1 ≤𝑉 𝜎2, there are three cases to consider:

(1) case J𝑏K{𝜎1, 𝜎2} = ∅: Jwhile 𝑏 do 𝑅K𝜎1 = 𝜎1 ≤𝑉 𝜎2 = Jwhile 𝑏 do 𝑅K𝜎2;
(2) case J𝑏K{𝜎1, 𝜎2} = {𝜎1}: because 𝜎1 ∈ Dwhile 𝑏 do 𝑅 , this implies that ∃𝑛 > 0 such that

J𝑏KJ𝑅𝑛−1K𝜎1 ≠ ∅ and J𝑏KJ𝑅𝑛K𝜎1 = ∅. We prove, by induction on 𝑖 , that for all 1 ≤ 𝑖 ≤ 𝑛

J𝑅𝑖K𝜎1 ≤𝑉 𝜎2 holds. Base case 𝑖 = 1: J𝑅K𝜎1 ≤𝑉 𝜎2 is true since 𝜎2 ∈ 𝐼 ∨ 𝑆 , (𝜎1, 𝜎2) ∈
L⋖ (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ) and Limit (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ) holds by assumption . Inductive step: assume

the statement holds for 𝑖 = 𝑛 − 1, namely, J𝑅𝑛−1K𝜎1 ≤𝑉 𝜎2. Then, since J𝑏KJ𝑅𝑛−1K𝜎1 ≠ ∅,
J𝑏K𝜎2 = ∅ and by the inductive hypothesis J𝑅𝑛−1K𝜎1 ≤𝑉 𝜎2, we get that these are limit

states, i.e., (J𝑅𝑛−1K𝜎1, 𝜎2) ∈ L⋖ (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ). By Limit (𝑏, 𝑅, 𝐼 ∨ 𝑆,𝑉 ), we can conclude

J𝑅KJ𝑅𝑛−1K𝜎1 = J𝑅𝑛K𝜎1 ≤𝑉 𝜎2. Therefore, we have proved that for all 1 ≤ 𝑖 ≤ 𝑛, J𝑅𝑖K𝜎1 ≤𝑉 𝜎2
holds. Finally, since J𝑏KJ𝑅𝑛K𝜎1 = ∅, we conclude Jwhile 𝑏 do 𝑅K𝜎1 = J𝑅𝑛K𝜎1 ≤𝑉 𝜎2;

(3) case J𝑏K{𝜎1, 𝜎2} = {𝜎1, 𝜎2}: because 𝜎1, 𝜎2 ∈ Dwhile 𝑏 do 𝑅 , this implies that ∃𝑛1, 𝑛2 > 0,

𝑛2 ≤ 𝑛1 such that J𝑏KJ𝑅𝑛1−1K𝜎1 ≠ ∅ and J𝑏KJ𝑅𝑛1K𝜎1 = ∅, while J𝑏KJ𝑅𝑛2−1K𝜎2 ≠ ∅ and

J𝑏KJ𝑅𝑛2K𝜎2 = ∅. For all 1 ≤ 𝑖 ≤ 𝑛2, we know J𝑅𝑖−1K𝜎1, J𝑅𝑖−1K𝜎2 ∈ 𝐼 ∧ 𝑏 therefore, by

assumption 𝑀𝑜𝑛↗ (𝑅, 𝐼 ∧ 𝑏,𝑉 ), we derive that J𝑅𝑖K𝜎1 ≤𝑉 J𝑅𝑖K𝜎2. Consequently, at the 𝑛2-
iteration of the loop with input 𝜎2, we have (1) J𝑅𝑛2K𝜎1 ≤𝑉 J𝑅𝑛2K𝜎2 and J𝑏KJ𝑅𝑛2K𝜎2 = ∅. To
terminate the proof it is sufficient to conclude, by induction on 𝑖 , that for all 𝑛2 ≤ 𝑖 ≤ 𝑛1,

J𝑅𝑖K𝜎1 ≤𝑉 𝜎̂ = J𝑅𝑛2K𝜎2 holds. This proof follows exactly the same steps of the proof by

induction of the previous case (J𝑏K{𝜎1, 𝜎2} = {𝜎1}) by considering 𝜎̂ in place of 𝜎2, and the
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base case shifted to 𝑖 = 𝑛2 (which trivially holds by (1)). Finally, from J𝑏KJ𝑅𝑛1K𝜎1 = ∅ and

J𝑏KJ𝜎̂K = ∅, we conclude Jwhile 𝑏 do 𝑅K𝜎1 = J𝑅𝑛1K𝜎1 ≤𝑉 𝜎̂ = J𝑅𝑛2K𝜎2 = Jwhile 𝑏 do 𝑅K𝜎2.
By using the premises of rule (while) we ended Jwhile 𝑏 do 𝑅K𝜎1 ≤𝑉 Jwhile 𝑏 do 𝑅K𝜎2 for all
𝜎1, 𝜎2 ∈ 𝑆 ∩Dwhile 𝑏 do 𝑅 such that 𝜎1 ≤𝑉 𝜎2, therefore, by Definition 3.1,𝑀𝑜𝑛↗ (while 𝑏 do 𝑅, 𝑆,𝑉 )
holds. □

4 ANALYSIS OF MONOTONE PROGRAMS
In this section, we show how monotonicity plays a central role in verifying numerical properties

of variables by abstract interpretation. In particular, we identify certain structural properties of

abstract domains and inputs that guarantee the existence of a complete abstract interpreter when
analyzing variables that exhibit monotonic behavior in the program under analysis.

An abstract interpreter J·KA is said to be complete for a program 𝑃 ∈ Prog and input 𝑆 ⊆ I𝑛

when the equality 𝛼A (J𝑃K) = J𝑃KA𝛼A (𝑆) holds. Note that this standard notion of completeness

on abstract interpreters refers to all program variables used by 𝑃 . However, when dealing with

non-relational abstractions, completeness can be specified with respect to a set of variables𝑉 ⊆ Var
which may be a subset of the variables actually utilized by the program under consideration. This

gives rise to the notion of 𝑉 -completeness.

Definition 4.1 (𝑽 -Completeness). Let us consider a non-relational abstraction A ∈ Abs(℘(I𝑛)),
a program 𝑃 ∈ Prog, an input 𝑆 ⊆ I𝑛 and a set of variables 𝑉 ⊆ Var . We say that the abstract

interpretation J𝑃KA of program 𝑃 is 𝑉 -complete at 𝑆 whenever the following condition holds for

all 𝑥 ∈ 𝑉 ∩ Var (𝑃):
(𝛼A (J𝑃K𝑆)) (𝑥) = (J𝑃KA𝛼A (𝑆)) (𝑥)

or, equivalently, 𝛼A (J𝑃K𝑆) =𝑉 J𝑃KA𝛼A (𝑆). ■

Essentially, the 𝑉 -completeness property of abstract interpreters focuses on the analysis precision

of a specific set of variables, namely, the variables in 𝑉 . As the standard notion of completeness is

equivalent to require Var (𝑃)-completeness, if J𝑃KA is complete then it is also 𝑉 -complete for all

𝑉 ⊆ Var , while if J𝑃KA is 𝑉 -complete for 𝑉 ⊂ Var (𝑃) then it may be not complete.

Example 4.2. Consider the abstract domain Sign
def
= {Z,−, 0, +,∅} for integer sign analysis pre-

sented in Example 2.2. Suppose that the abstract sum operation ⊕ on J·KSign is soundly imple-

mented as follows: + ⊕ + = +; if ★ ∈ {Z,−, 0, +} then ★ ⊕ 0 = ★, ∅ ⊕ 0 = 0, + ⊕ − = Z, and if

★ ∈ {Z,−, 0, +,∅} then Z ⊕ ★ = Z. Consider the program 𝑃 : 𝑥 := −1; 𝑦 := 1; 𝑥 := 𝑥 + 𝑦; 𝑦 := 𝑦 + 1.

Then, for any input, J𝑃KSign is {𝑦}-complete but not complete, i.e., not {𝑥,𝑦}-complete. Indeed, for

all 𝑆 ∈ ℘(Z2) we have 𝛼Sign (J𝑃K𝑆) = (0, +) <Sign (Z, +) = J𝑃KSign𝛼Sign (𝑆), but (𝛼Sign (J𝑃K𝑆)) (𝑦) =
+ = (J𝑃KSign𝛼Sign (𝑆)) (𝑦). ♦

It is possible to relate monotonicity with the precision of program analysis when certain structural

properties on the considered set of inputs and on the abstract domain are met. To this end, we

introduce the notions of: (1)𝑉 -bounded input, (2) Int-abstractable domain and (3)𝑉 -convex domain.

Given a program 𝑃 ∈ Prog, a set 𝑉 ⊆ Var of variables and a set of inputs 𝑆 ⊆ I𝑛 , we define

min𝑉 𝑆
def
= {𝜎 ∈ 𝑆 | ∀𝑥 ∈ 𝑉 ∩ Var (𝑃). 𝜎 (𝑥) = min({𝜌 (𝑥) | 𝜌 ∈ 𝑆})}

as the minimum stores in 𝑆 that assign to every variable 𝑥 in 𝑉 and in the text of 𝑃 , the minimum

value assumed by 𝑥 over 𝑆 . This means that, when min𝑉 𝑆 ≠ ∅, then we can find a minimum store

𝜎̂ ∈ 𝑆 for the variables in 𝑉 such that for all 𝜎 ∈ 𝑆 , 𝜎̂ ≤𝑉 𝜎 . For instance, if Var (𝑃) = 𝑉 = {𝑥,𝑦},
𝑆 = {(0, 1), (3, 4), (1, 2)}, 𝑆 ′ = {(1, 3), (2, 0), (4, 4)}, then min𝑉 𝑆 = {(0, 1)} while min𝑉 𝑆 ′ = ∅. The
set max𝑉 of maximum stores in 𝑆 for variables in 𝑉 , is dually defined.
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Definition 4.3 (𝑽 -Bounded input). The input set 𝑆 is said to be 𝑉 -bounded for the program 𝑃

when the following two conditions are satisfied: (𝑖) J𝑃Kmin𝑉 𝑆 ≠ ∅, and (𝑖𝑖) J𝑃Kmax𝑉 𝑆 ≠ ∅. ■

Intuitively, an input set 𝑆 is 𝑉 -bounded for the program 𝑃 when 𝑆 contains a minimum and a

maximum store according to, respectively, min𝑉 𝑆 and max𝑉 𝑆 , and 𝑃 terminates for at least one

store in min𝑉 𝑆 and max𝑉 𝑆 .
While the notion of 𝑉 -boundness depends on the input (and on the program), the next two

definitions rely more on abstract domains.

Definition 4.4 (Int-Abstractable domain). We say that an abstract domain A ∈ Abs(℘(I𝑛)) is
Int-abstractable whenever A ≤Abs(℘(I𝑛 ) ) Int, i.e., A can exactly represent intervals. ■

For instance, Sign is not Int-abstractable, while it is the case for Int,Zone,Oct ∈ Abs(℘(I𝑛)) namely

Intervals, Zones and Octagons abstract domains [Miné 2001a,b, 2017].

Definition 4.5 (𝑽 -Convexity). An abstract domainA ∈ Abs(℘(I𝑛)) is𝑉 -convex at 𝑆 for a program
𝑃 ∈ Prog, set of variables 𝑉 ⊆ Var and input set 𝑆 ∈ ℘(I𝑛), if and only if for all 𝑥 ∈ 𝑉 ∩ Var (𝑃),
(𝛾A (𝛼A (J𝑃K𝑆))) (𝑥) ∈ ℘(I) forms a convex set. ■

Namely, the abstract set of values assumed by the program variable 𝑥 at the end of the concrete

execution of 𝑃 with input 𝑆 , formally (𝛾A (𝛼A (J𝑃K𝑆))) (𝑥), must form a convex set, i.e. it must

have no holes, and this must hold for all variables in 𝑉 that are also in the text of 𝑃 . Of course,

abstract domains composed by only convex representations of elements of ℘(I), e.g. Int and Sign,
are 𝑉 -convex for all 𝑃 ∈ Prog, 𝑉 ⊆ Var and 𝑆 ⊆ I𝑛 . This does not hold in general for abstract

domains composed by also non-convex abstract elements, e.g., Parity. However, it may happen

that non-convex abstractions are 𝑉 -convex for some program 𝑃 and input 𝑆 .

Example 4.6. The integer congruence abstract domain Congr ∈ Abs(℘(Z)) [Granger 1989]
defined as Congr

def
= {𝑎Z + 𝑏 | 𝑎 ∈ N, 𝑏 ∈ Z} ∪ {⊥Congr}, contains abstract elements having

the form 𝑎Z + 𝑏 such that 𝛾Congr (𝑎Z + 𝑏) def
= {𝑎𝑘 + 𝑏 | 𝑘 ∈ Z} and 𝛼Congr (𝑆)

def
=

∨𝑐∈𝑆
Congr (0Z + 𝑐).

The parity domain Parity is a special case of this domain where 𝑎 = 2. Congr contains convex
properties, e.g. 𝛾Congr (1Z + 0) = Z or singletons 𝛾Congr (0Z + 𝑏) = {𝑏}, and non-convex properties.

For example, Congr is {𝑥}-convex for the assignment 𝑥 := 1 regardless of the input 𝑆 ⊆ Z since

𝛾Congr (𝛼Congr (J𝑥 := 1K𝑆)) (𝑥) = {1} and {1} is clearly a convex set. While, for instance, it is not {𝑥}-
convex for the assignment 𝑥 := 𝑥 ∗2+1 at the input {2, 3} as 𝛾Congr (𝛼Congr (J𝑥 := 𝑥 ∗ 2 + 1K{2, 3})) =
𝛾Congr (2Z + 1) = {1, 3, 5, . . . } contains many holes, namely, all the even numbers. ♦

Finally, we introduce the𝑉 -complete-analyzability propertywhich identifies the class of programs

admitting a 𝑉 -complete analysis over a non-relational abstract domain A for input 𝑆 .

Definition 4.7 (𝑽 -Complete-analyzability). A program 𝑃 ∈ Prog is said to be 𝑉 -complete-
analyzable for the non-relational abstraction A ∈ Abs(℘(I𝑛)), variables in 𝑉 ⊆ Var and input

𝑆 ⊆ I𝑛 if and only if there exists an abstract interpreter J·KA such that J𝑃KA is 𝑉 -complete at 𝑆 . ■

We use the predicate 𝐶𝑜𝑚𝑝𝑙A (𝑃, 𝑆,𝑉 ) to indicate that 𝑃 is 𝑉 -complete-analyzable for the abstract

domainA at input 𝑆 . For instance, 𝑃 in Example 4.2 and ReLU defined in Section 1 are, respectively,

{𝑦}- and {𝑥}-complete-analyzable for, respectively, Sign and Int as the defined analyses J𝑃KSign
and JReLUKInt are, respectively, {𝑦}- and {𝑥}-complete for all inputs. The following result is a

straightforward consequence of Theorem 2.6.

Lemma 4.8. 𝐶𝑜𝑚𝑝𝑙A (𝑃, 𝑆,𝑉 ) ⇔ J𝑃K𝛼A is 𝑉 -complete at 𝑆 . □
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Therefore, in order to prove that a program 𝑃 is𝑉 -complete-analyzable for a non-relational abstrac-

tion A and input 𝑆 it is sufficient to prove that the BCA J𝑃K𝛼A is 𝑉 -complete at 𝑆 . The following

proposition outlines the trivial cases in which the 𝑉 -complete-analyzability property always holds

for any program.

Lemma 4.9. Let 𝑃 ∈ Prog. If one of the following holds:

(i) A is trivial, namely, A = ℘(I𝑛);
(ii) 𝑉 ∩ Var (𝑃) = ∅;
(iii) 𝑆 is representable in A, namely, 𝑆 = 𝛾A (𝛼A (𝑆));

then 𝐶𝑜𝑚𝑝𝑙A (𝑃, 𝑆,𝑉 ) is true.

Proof. (𝑖) IfA is trivial then𝛾A◦𝛼A = 𝜆𝑥.𝑥 , therefore the BCA is exactly the concrete semantics

J·K.
(𝑖𝑖) By Definition 4.1, when 𝑉 does not contain variables in the text of 𝑃 then any abstract

interpreter J𝑃KA is 𝑉 -complete at all inputs 𝑆 .

(𝑖𝑖𝑖) Suppose 𝑆 = 𝛾A (𝛼A (𝑆)). Then, for every A and 𝑃 , 𝛼A (J𝑃K𝑆) = 𝛼A (J𝑃K𝛾A (𝛼A (𝑆))) =

J𝑃K𝛼A𝛼A (𝑆), i.e., the BCA J𝑃K𝛼A is complete at 𝑆 and therefore 𝑉 -complete for any 𝑉 ⊆ Var . By
Lemma 4.8, this implies that 𝑃 is 𝑉 -complete-analyzable. □

We are interested in studying the non-trivial cases, namely, when the abstract domain A differs

from the concrete domain ℘(I𝑛), the set of variables 𝑉 includes at least one variable in the text of

the considered program 𝑃 , and the input under inspection is not representable in A.

We have now all the ingredients to state the main result of this section.

Theorem 4.10. Let 𝑃 ∈ Prog,𝑉 ⊆ Var, A ∈ Abs(℘(I𝑛)) non-relational, and assume the following:
(1) 𝑆 is 𝑉 -bounded, (2)A is Int-abstractable, and (3)A is 𝑉 -convex at 𝑆 for 𝑃 . Then, the following
implication holds:

𝑀𝑜𝑛(𝑃,𝛾A (𝛼A (𝑆)),𝑉 ) ⇒ 𝐶𝑜𝑚𝑝𝑙A (𝑃, 𝑆,𝑉 )

Proof. We prove the implication by showing that, by the four assumptions (1),(2),(3) and mono-

tonicity, the BCA J𝑃K𝛼A is 𝑉 -complete at 𝑆 , thus, by Lemma 4.8, proving the possibility to build a

𝑉 -complete analysis of variables in𝑉 at 𝑆 . Lemma 4.9 already provides us a proof for the trivial cases.

Let us consider the non-trivial cases where both A ≠ ℘(I𝑛), 𝑉 ∩ Var (𝑃) ≠ ∅ and 𝑆 ⊂ 𝛾A (𝛼A (𝑆))
hold. Let 𝑉̃ = 𝑉 ∩ Var (𝑃). The proof is made by contradiction. We assume:

(0) A non-relational;

(1) min𝑉̃ 𝑆 and max𝑉̃ 𝑆 exist in 𝑆 , and J𝑃Kmin𝑉̃ 𝑆 , J𝑃Kmax𝑉̃ 𝑆 ≠ ∅;
(2) A can exactly represents intervals;

(3) for all 𝑥 ∈ 𝑉̃ , the set (𝛾A (𝛼A (J𝑃K𝑆))) (𝑥) is convex;
(4) 𝑃 is 𝑉 -monotone at 𝛾A (𝛼A (𝑆)), namely, for all 𝑥 ∈ 𝑉̃ either it holds

i) ∀𝜎1, 𝜎2 ∈ 𝛾A (𝛼A (𝑆)) ∩ D𝑃 . (𝜎1 (𝑥) ≤ 𝜎2 (𝑥) ⇒ (J𝑃K𝜎1) (𝑥) ≤ (J𝑃K𝜎2) (𝑥)) or
ii) ∀𝜎1, 𝜎2 ∈ 𝛾A (𝛼A (𝑆)) ∩ D𝑃 . (𝜎1 (𝑥) ≤ 𝜎2 (𝑥) ⇒ (J𝑃K𝜎1) (𝑥) ≥ (J𝑃K𝜎2) (𝑥));

(5) 𝐶𝑜𝑚𝑝𝑙A (𝑃, 𝑆,𝑉 ) does not hold, namely, ∃𝑥 ∈ 𝑉̃ : 𝛼A (J𝑃K𝑆) <{𝑥 }
A J𝑃K𝛼A𝛼A (𝑆).

By (2), we know that all the spurious elements added by A are contained in the Int abstraction,
namely, for all 𝐼 ∈ ℘(I𝑛), 𝛾A (𝛼A (𝐼 )) ⊆ 𝛾Int (𝛼Int (𝐼 )). This implies that, because by (1) 𝑆 has a

minimum and maximum element w.r.t. variables in 𝑉̃ , minimum and maximum elements are

not altered by A, namely, min𝑉̃ 𝑆 =𝑉̃ min𝑉̃𝛾A (𝛼A (𝑆)) and max𝑉̃ 𝑆 =𝑉̃ max𝑉̃𝛾A (𝛼A (𝑆)). Let us
consider the case where 𝑃 is 𝑉 -non-decreasing at 𝛾A (𝛼A (𝑆)) (the non-increasing case is dual).
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Starting from assumptions (1) and (2), we get:

min𝑉̃ 𝑆 =𝑉̃ min𝑉̃𝛾A (𝛼A (𝑆)) ⇒

J𝑃Kmin𝑉̃ 𝑆 =𝑉̃ J𝑃Kmin𝑉̃𝛾A (𝛼A (𝑆)) ⇒ [by (4)]

(𝑎) min𝑉̃ J𝑃K𝑆 =𝑉̃ min𝑉̃ J𝑃K𝛾A (𝛼A (𝑆)) ≤𝑉̃
[by (1)]

max𝑉̃ 𝑆 =𝑉̃ max𝑉̃𝛾A (𝛼A (𝑆)) ⇒

J𝑃Kmax𝑉̃ 𝑆 =𝑉̃ J𝑃Kmax𝑉̃𝛾A (𝛼A (𝑆)) ⇒ [by (4)]

max𝑉̃ J𝑃K𝑆 =𝑉̃ max𝑉̃ J𝑃K𝛾A (𝛼A (𝑆)) ⇒ [by (𝑎),(2)]
∀𝑥 ∈ 𝑉̃ . [(min{𝑥 }J𝑃K𝑆) (𝑥), (max{𝑥 }J𝑃K𝑆) (𝑥)] =

[(min{𝑥 }J𝑃K𝛾A (𝛼A (𝑆))) (𝑥), (max{𝑥 }J𝑃K𝛾A (𝛼A (𝑆))) (𝑥)] ⇒ [by (3)]
∀𝑥 ∈ 𝑉̃ . 𝛾A (𝛼A (J𝑃K𝑆)) ={𝑥 } 𝛾A (J𝑃K𝛼A𝛼A (𝑆))

Note that, A non-relational and 𝑉 -convex at 𝑆 means that (𝛾A (𝛼A (J𝑃K𝑆))) (𝑥) corresponds to the

interval [(min{𝑥 }J𝑃K𝑆) (𝑥), (max{𝑥 }J𝑃K𝑆) (𝑥)] for all the considered variables in 𝑉̃ , i.e., all the 1-

dimensional lines having (min{𝑥 }J𝑃K𝑆) (𝑥) as minimum element and (max{𝑥 }J𝑃K𝑆) (𝑥) as maximum

element, while the interval [(min{𝑥 }J𝑃K𝛾A (𝛼A (𝑆))) (𝑥), (max{𝑥 }J𝑃K𝛾A (𝛼A (𝑆))) (𝑥)] corresponds
to (𝛾A (𝛼A (J𝑃K𝑆))) (𝑥) for all 𝑥 ∈ 𝑉̃ because of the soundness property of abstract interpretation.

Therefore, by the last derivation, we can conclude 𝛼A (J𝑃K𝑆) =𝑉 J𝑃K𝛼A𝛼A (𝑆), i.e., 𝐶𝑜𝑚𝑝𝑙A (𝑃, 𝑆,𝑉 )
holds, contradicting (5). □

Theorem 4.10 identifies specific conditions on the input states and on the abstract domain that

guarantee the existence of a program analysis that accurately captures the full behavior of a program.

More specifically, under the three assumptions of Theorem 4.10, the 𝑉 -monotonicity of program

𝑃 over the inputs 𝛾A (𝛼A (𝑆)) is a sufficient condition to ensure the 𝑉 -complete-analyzability

of program 𝑃 at 𝑆 over the abstract domain A. This result reveals a connection between the

extensional property of 𝑉 -monotonicity in programs and the completeness property of an abstract

interpreter J·KA : the class of monotone programs represents a particular case over which it is

possible to precisely (i.e., with no false positives and no false negatives) prove through J·KA all

properties expressible in the abstract domains and over the inputs that satisfy the three conditions

of Theorem 4.10.

Example 4.11. Monotone activation functions in neural networks (see, e.g., [Albarghouthi 2021])

are used to add non-linearity to the function computed by a neuron. The following three programs
3

implement three well known activation functions:

Signum

def
= if 𝑥 < 0 then 𝑥 := −1

else if 𝑥 > 0 then 𝑥 := 1 else 𝑥 := 0

ReLU

def
= if 𝑥 ≤ 0 then 𝑥 := 0 else 𝑥 := 𝑥

SiL

def
=

𝑥

1 + 𝑒−𝑥

The Signum function maps negative input values to −1. The Sigmoid-weighted Linear Unit

(SiL) [Elfwing et al. 2018] is used for neural network function approximation in reinforcement

learning [Ramachandran et al. 2018]. Their input-output relation is represented in Fig. 6. Let us

3
We assume that SiL is an implementation in Prog using only variable 𝑥 .
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Fig. 6. Signum, ReLU and SiL activation functions.

consider the interval abstract domain Int on reals R, which has been extensively used for verifying

properties of neural networks for, e.g., image classification [Gehr et al. 2018; Gowal et al. 2019],

natural-language processing [Huang et al. 2019], and cyber-physical systems [Wang et al. 2018]. It

is easy to note that both Signum and ReLU are {𝑥}-non-decreasing programs and they can be easily

verified with the proof system defined in Section 3. This guarantees the existence of a complete

analysis on Int for all possible bounded inputs since JSignumK𝛼Int and JReLUK𝛼Int are complete.

Furthermore, if the overall neural network is monotone, for example, when it consists of non-

decreasing activation functions and each neuron implements a non-decreasing function, then

Theorem 4.10 assures us the possibility to implement a complete static analyzer on bounded inputs

for the Int abstract domain and, more generally, for any non-relational abstraction A that satisfies

Definition 4.4 and 4.5. This analyzer can accurately verify safety properties [Amodei et al. 2016]

representable in A, at bounded sets of inputs. This result is not guaranteed when the overall

neural network is not monotone, namely, when either a neuron or the activation functions used

are not monotone, such as SiL. For instance, suppose that we want to check whether the variable

𝑥 at the end of the execution of SiL on the input set {−4, 0} ranges in the interval [−0.1, 0], and
suppose we would like to check this specification using an abstract interpreter over Int able to
answer this question with no imprecision. The concrete evaluation returns 𝛼Int (JSiLK{−4, 0}) ≃
[−0.07, 0], while the BCA on Int outputs JSiLK𝛼Int𝛼Int ({−4, 0}) ≃ [−0.28, 0]. Note that JSiLK𝛼Int
leads to a false-alarm since JSiLK𝛼Int𝛼Int ({−4, 0}) ≰Int [−0.1, 0] even if the specification is satisfied:

𝛼Int (JSiLK{−4, 0}) ≤Int [−0.1, 0]. This result excludes the possibility to define a complete analysis

JSiLKInt over {−4, 0}. Nevertheless, if we consider an input set where SiL is monotone, e.g. {0, 4},
we have completeness: 𝛼Int (JSiLK{0, 4}) ≃ [0, 3.93] ≃ JSiLK𝛼Int𝛼Int ({0, 4})}, thus admitting the

possibility to build a complete analysis for this input. ♦

The converse of Theorem 4.10 does not hold, pointing out that the monotone condition is stronger

than the notion of 𝑉 -complete-analyzability, as shown by the following example.

Example 4.12. Consider the following program 𝑃 : if 𝑥 ≠ 3 then 𝑥 := 𝑥 else 𝑥 := 𝑥 − 2.

It is easy to note that this program is not monotone: it is not non-decreasing since 2 < 3 but

J𝑃K(2) = 2 > 1 = J𝑃K(3), and not non-increasing since 2 < 4 but J𝑃K(2) = 2 < 4 = J𝑃K(4).
Consider the input set {1, 5} and the Int ∈ Abs(℘(Z)) abstraction. Clearly, Int and {1, 5} satisfy the

assumptions of Theorem 4.10. However, 𝛼Int (J𝑃K{1, 5}) = [1, 5] = J𝑃K𝛼Int𝛼Int ({1, 5}), namely J𝑃K𝛼Int
is complete at {1, 5}, therefore 𝑃 is complete-analyzable at {1, 5} even if 𝑃 is not monotone. ♦

In the next three examples we show the reasons why the three assumptions of Theorem 4.10

are necessary. Assumptions (1), requiring that 𝑆 is 𝑉 -bounded, and (2), requiring that A is Int-
abstractable, are strictly correlated: if 𝑆 is 𝑉 -bounded and 𝑃 is 𝑉 -non-decreasing, then J𝑃K𝑆 is
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𝑉 -bounded and its minimum and maximum are precisely J𝑃Kmin𝑉 𝑆 and J𝑃Kmax𝑉 𝑆 (or reversed

in case of non-increasing programs). Moreover, when A is Int-abstractable then all the spurious

elements added by the abstraction over 𝑆 are enclosed by the minimum and maximum of 𝑆 .

Indeed, the two assumptions are, in a sense, complementary: if 𝑆 is not 𝑉 -bounded, then even

if A ≤Abs(℘(I𝑛 ) ) Int, A could add new maximum and minimum values for a variable 𝑥 ∈ 𝑉 at

𝛾A (𝛼A (𝑆)) which may lead to incompleteness. This reasoning holds also for 𝑆 𝑉 -bounded and A
not representing intervals. The following example shows these corner cases.

Example 4.13. Consider the following program:

𝑃 : if 𝑥 + 𝑦 − 8 ≥ 0 then 𝑥 := 1; 𝑦 := 1 else 𝑥 := −1; 𝑦 := −1

We analyze this program over the interval abstraction Int ∈ Abs(℘(Z2)) on the input 𝑆 =

{(4, 4), (3, 5)}. It is easy to note that {(4, 4), (3, 5)} is not {𝑥,𝑦}-bounded since the minimum (3, 4)
for both 𝑥,𝑦 is not in 𝑆 . The abstraction of {(4, 4), (3, 5)} into Int2 corresponds to ( [3, 4], [4, 5]), i.e.,
the 2-dimensional rectangle including (4, 4) and (3, 5). Therefore, 𝛾Int (𝛼Int ({(4, 4), (3, 5)})) has new
minimum and maximum elements for {𝑥,𝑦}, namely, min{𝑥,𝑦}𝛾Int (𝛼Int ({(4, 4), (3, 5)})) = {(3, 4)}
and max{𝑥,𝑦}𝛾Int (𝛼Int ({(4, 4), (3, 5)})) = {(4, 5)}. By using rules in Fig. 2 and 3, it is easy to verify

that 𝑃 is {𝑥,𝑦}-non-decreasing over 𝛾Int (𝛼Int ({(4, 4), (3, 5)})) as the guard is positive linear and

the two branches implies that (−1,−1) <{𝑥,𝑦} (1, 1) so the predicate Boundary is trivially true on

boundary states. However, 𝐶𝑜𝑚𝑝𝑙 Int (𝑃, {(4, 4), (3, 5)}, {𝑥,𝑦}) does not hold:

𝛼Int (J𝑃K𝑆) = 𝛼Int ({(1, 1)}) = ( [1, 1], [1, 1])
J𝑃K𝛼Int𝛼Int (𝑆) = 𝛼Int (J𝑃K{(4, 4), (3, 5), (3, 4), (4, 5)})

= 𝛼Int ({(1, 1), (−1,−1)}) = ( [−1, 1], [−1, 1]).

By ( [1, 1], [1, 1]) <Int ( [−1, 1], [−1, 1]), we can deduce the {𝑥,𝑦}-incompleteness of J𝑃K𝛼A at

{(4, 4), (3, 5)}. In this example, the minimal point (3, 4) added by Int caused the incompleteness.

Consider now a slightly change in the Boolean condition of 𝑃 :

𝑃 ′
: if 𝑥 + 𝑦 − 7 ≥ 0 then 𝑥 := 1; 𝑦 := 1 else 𝑥 := −1; 𝑦 := −1

We analyze this new program over the Sign ∈ Abs((Z2)) abstraction with input 𝑆 ′ = {(3, 4), (4, 5)}.
Clearly, Sign is not Int-abstractable as for instance 𝛾Sign (𝛼Sign ({1, 4})) = {0, 1, 2, 3, 4, 5, . . . } ⊈
𝛾Int (𝛼Int ({1, 4})) = {1, 2, 3, 4}. Here, even if 𝑆 ′ is {𝑥,𝑦}-bounded, Sign adds also the spurious

elements on the left of min{𝑥,𝑦}𝑆 = {(3, 4)}, therefore capturing another output property, the

negative numbers (−) in this case, as shown by the following evaluations:

𝛼Sign (J𝑃 ′K𝑆 ′) = 𝛼Sign ({(1, 1)}) = (+, +)
J𝑃 ′K𝛼Sign𝛼Sign (𝑆 ′) = 𝛼Sign (J𝑃 ′K{(Z≥0,Z≥0)}) = (Z,Z)

therefore we can conclude that 𝑃 ′
is not {𝑥,𝑦}-complete analyzable at {(3, 4), (4, 5)}. ♦

As regarding assumption (3), we require 𝑉 -convexity of the abstraction on the considered input 𝑆

intuitively because there must be no “holes" on the property which captures the output of 𝑃 at 𝑆

otherwise there could exist monotone functions which “exploit" a point in that hole to make the

function incomplete.

Example 4.14. Consider the abstract domain P ⊓ I ∈ Abs(℘(Z)) which is the reduced product of

Parity and Int abstract domains. P ⊓ I represents properties which are the intersection between

intervals and even or odd numbers. For example, [0, 10]even represents {0, 2, 4, 6, 8, 10}, that is, all
the even numbers in the interval [0, 10]. Clearly, this abstract domain can represent non-convex
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Fig. 7. On the left, the 2-dimensional representation of 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} (blue points) and 𝛾Zone (𝛼Zone (𝑆))
which adds 𝑒 (the red point). On the right, the monotone transformation 𝑃 of 𝑆 where the region outlined
by the blue dashed line represents 𝛾Zone (𝛼Zone (J𝑃K𝑆)), while the red dashed line corresponds to the region
added by 𝛾Zone (J𝑃K𝛼Zone (𝑆)).

properties, such as [0, 10]even. However, P ⊓ I is Int-abstractable because it can represent exactly all

the intervals. Let us consider the following program:

𝑄 : if 𝑥 mod 2 = 0 ∨ 𝑥 = 3 then skip else 𝑥 := 𝑥 + 1

where we assume the mod operator is defined in Prog. Let us consider the set of inputs {2, 5}. It is
easy to note that 𝑄 is non-decreasing over 𝛾P⊓I (𝛼P⊓I ({2, 5})). Moreover, by the evaluations

𝛼P⊓I (J𝑄K{2, 5}) = 𝛼P⊓I ({2, 6}) = [2, 6]even
J𝑄K𝛼P⊓I𝛼P⊓I ({2, 5}) = 𝛼P⊓I ({2, 3, 4, 6}) = [2, 6]

we can conclude that P ⊓ I is not {𝑥}-convex at {2, 5}, since [2, 6]even has many holes, namely, all

the odd numbers in [2, 6]. 𝑄 is monotone over 𝛾P⊓I (𝛼P⊓I ({2, 5})) but 𝐶𝑜𝑚𝑝𝑙P⊓I (𝑄, {2, 5}, {𝑥}) does
not hold as J𝑃K𝛼P⊓I is not complete at {2, 5}: [2, 6]even <P⊓I [2, 6]. ♦

5 ON THE RELATIONAL ABSTRACT DOMAINS
So far we have exclusively focused on non-relational abstractions. A follow-up question could

be whether it is possible to extend the result of Theorem 4.10 to relational abstractions able to

infer affine inequalities. These include, e.g., Zones and Octagons abstract domains Zone,Oct ∈
Abs(℘(I𝑛)) which are able to express constraints with two variables: 𝑥 − 𝑦 ≤ 𝑘 for Zone, while
±𝑥 ±𝑦 ≤ 𝑘 forOct with 𝑘 ∈ I. Unfortunately, the answer is negative. As a first observation, because
relational abstractions consider, as the name suggest, relations between variables, it is no longer

possible to employ the notion of completeness modulo a set of variables (Definition 4.1). Instead,

the standard notion of completeness is considered. Let us look at the case of 2-dimensional inputs,

namely when Var (𝑃) = {𝑥,𝑦}. Firstly, note that the 2-dimensional abstraction shape of a relational

Int-abstractable abstract domain able to infer affine inequalities over a bounded set of inputs 𝑆 ,

will consist of edges having the form 𝑥 = 0 and 𝑦 =𝑚𝑥 + 𝑘 with𝑚,𝑘 ≥ 0. This is because, when

considering bounded sets, 𝑆 has minimum and maximum points, A is at least as precise as Int,
and, by assuming monotonicity, 𝛾A (𝛼A (J𝑃K𝑆)) and 𝛾A (𝛼A (J𝑃K𝛾A (𝛼A (𝑆)))) do not modify the

order in 𝛾A (𝛼A (𝑆)). So, for example, the Oct abstraction of a monotonic program over an input

will result in the same shape as the Zone abstraction. However, it turns out that even monotonic

programs can violate the completeness property over a bounded set 𝑆 for a relational abstraction.

The following is a counterexample of Theorem 4.10 for the Zone ∈ Abs(℘(Z2)) abstract domain.
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Example 5.1. Consider a set 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} of four symbolic points in two dimensions along

the line 𝑦 = 𝑥 depicted on the left of Fig. 7. This set has minimum at 𝑎 and maximum at 𝑑 . The

Zone abstraction 𝛾Zone (𝛼Zone (𝑆)) adds one spurious element 𝑒 between 𝑏 and 𝑐 . The figure on the

right represents a monotone transformation J𝑃K of the points in 𝑆 : essentially, the minimum and

maximum are left invariant, while 𝑏 and 𝑐 points are monotonically moved downward, keeping

the ≤-order unchanged since J𝑃K𝑎 ≤ J𝑃K𝑏 ≤ J𝑃K𝑐 ≤ J𝑃K𝑑 . The trapezoid having dashed blue

edges represents the concrete abstraction 𝛾Zone (𝛼Zone (J𝑃K𝑆)). If 𝑃 transforms the spurious point 𝑒

generated by the abstraction, as the red point on the right of Fig. 7, namely J𝑃K𝑒 , then program

𝑃 is still monotonic over 𝛾Zone (𝛼Zone (𝑆)) since J𝑃K𝑏 ≤ J𝑃K𝑒 ≤ J𝑃K𝑐 . However, the shape outlined
by 𝛾Zone (J𝑃K𝛼Zone (𝑆)) differs from the dashed blue trapezoid because of J𝑃K𝑒: this point adds the
region surrounded by the red dashed line. This implies that, even if 𝑃 is non-decreasing over

𝛾Zone (𝛼Zone (𝑆)), J𝑃K𝛼Zone is not complete at 𝑆 . In fact, it turns out that 𝑃 could move 𝑒 to any point

in the orange region of Fig. 7 in order to keep monotonicity and break completeness. ♦

Relational abstract domains may disclose hidden relations between variables which may violate

the complete-analyzability property over a bounded set 𝑆 , even when all program variables behave

monotonically. A better understanding of which operators (or weakening) preserve the complete-

analyzability property is necessary, which we leave as a future work.

6 RELATEDWORK
In the literature, there aremanyworks exploring the role ofmonotonicity in programming languages

(mostly referring to the non-decreasing case only). One of the most prominent and classical use of

monotonicity is to guarantee the existence of a minimal fixpoint and termination of functions when

certain conditions are satisfied. This goes back to the Knaster-Tarski fixpoint theorem [Tarski 1955]

and its extensive uses, e.g., in program analysis [Nielson et al. 2015], or as the bases for defining

programming languages such as Datafun [Arntzenius and Krishnaswami 2016] and Flix [Madsen

et al. 2016]. In particular, Arntzenius and Krishnaswami [2016] track monotonicity of the functional

language Datafun with the aid of a type system which has some similarities with our proof system.

In Datafun variables could be declared monotone by users guiding the type system in recognizing

monotone functions. Conversely, our aim is to inductively find monotone variables starting from a

piece of code without any prior knowledge. Their type system differs from ours as their definition

of monotonicity is slightly different: in their case a program is 𝑉 -monotone when for every pair

of stores that share the same values of variables not in 𝑉 , the order of variables in 𝑉 is preserved

after the execution of the program (while we do not have any constraints on the variables not in

𝑉 ). Moreover, their rules for the if-statement consider two simple cases: the guard does not use

monotone variables, or the false-branch corresponds to the least element.

Monotonicity is of key importance also in separation logic [Ahman et al. 2018; Pilkiewicz

and Pottier 2011; Timany and Birkedal 2021] for reasoning about concurrent programs. Here

monotonicity is used with respect to some relation as requirement on modules, for example a

program module may need to know that the computation performed on the shared memory by

other modules always amounts to progress in some monotone way. This is in contrast with the

goal of our proof system where monotonicity is not a requirement but it is a property of variables

that we want to discover in order to derive the complete-analyzability property.

Other uses of monotonicity lie also in distributed programming [Alvaro et al. 2011; Conway et al.

2012] to guarantee that nodes in a distributed database eventually agree [Vogels 2009]. Conway et al.

[2012] propose a simple analysis for identifying possible non-monotone code locations of programs

written in Bloom
𝐿
(an extension of the Bloom [Alvaro et al. 2011] declarative programming language

incorporating a join-semilattice 𝐿 with built-in monotone functions). The monotonicity analysis
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here is carried out through a predicate dependency graph which is based on a simple program

syntax test: locations where an asynchronously computed value is consumed by a non-monotone

operator, are classified “at risk". Monotone operations are just a list of monotone functions defined

by the lattices used by the current program.

The mathematical notions of continuity and differentiability are related to monotonicity, even

when considering programs. Continuity has been extensively studied for programs [Chaudhuri

et al. 2010] since it is a precursor for verifying their robustness [Chaudhuri et al. 2011]. Although

monotonicity and continuity are different properties, the proof system defined in [Chaudhuri

et al. 2010] for verifying continuity has some similarities with ours for monotonicity: both if

rules consider boundary states for proving the respective property on branches. Chaudhuri et al.

[2010] check that the true- and false-branches agree at boundary states on the considered variables

(called 𝑉 -equivalence), while for those states we check that the order is preserved (thanks to the

positive linearity assumption of the guard). Furthermore, program continuity could be used as

a sufficient condition for proving monotonicity on branches: roughly, by considering the non-

decreasing case, if both branches are non-decreasing and the overall if-statement is proved to be

continuous, then the if-statement is also non-decreasing as the 𝑉 -equivalence on borders ensures

the order of boundary states is not violated. Also differentiability has been studied in programming

languages [Abadi and Plotkin 2020; Beck and Fischer 1994; Ehrhard and Regnier 2003; Elliott 2018]

as it plays a prominent role in modern machine learning. Although the differentiability property

can be exploited for verifying monotonicity of expressions (see (assign) rule), our proof system
does not require differentiability of the branches, as this would be a stronger condition (there are

non-differentiable functions that are monotone, e.g., ReLU).

The Interval Universal Approximation Theorem (IUA) [Baader et al. 2020; Wang et al. 2022]

relates (computable) continuous function to provably robust neural networks through interval

analysis. IUA guarantees that it is possible to find a provably robust neural network approximating a

continuous function. We are relating, instead, the (extensional property) monotonicity of a program

𝑃 (namely, a computable monotone function) with the existence of a provably complete analysis

over it on a restricted class of non-relational domains and inputs, without passing through the

phase of finding a new complete-analyzable program 𝑃 ′
semantically equivalent to 𝑃 . Nevertheless,

these two results may hide interesting connections which deserve further investigations.

To the best of our knowledge, this is the first time that a relation between monotonicity (either

non-decreasing or non-increasing) and the precision of program analysis has been established.

Previous work in program analysis (e.g., by Giacobazzi et al. [2015] and Campion et al. [2022b])

shows that the precision of a program analyzer is strictly correlated to how programs are written.

Our definition of 𝑉 -completeness is based on the well known notion of completeness [Giacobazzi

et al. 2000] and local completeness [Bruni et al. 2021, 2023]. Although it has been proved that

completeness and its weakening are non-decidable program properties [Campion et al. 2022b;

Giacobazzi et al. 2015], we showed that if a program is monotone then this fact is a sufficient

condition for proving completeness of the BCA over a specific family of abstractions and inputs.

7 DISCUSSION
Completeness in abstract interpretation is influenced not only by how programs are written but

also by what they compute. It is therefore an interesting mix of intensional and extensional program

properties that impact the precision of program analysis. While the intensional nature of complete-

ness in abstract interpretation has been recently investigated [Bruni et al. 2020; Giacobazzi et al.

2015], less is known about its extensional nature. We established a relation between extensional

program properties and the precision of program analysis. Monotone programs are an interesting

case study delimiting the precision of some non-relational abstractions. On sub-components that
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behave monotonically, specifications Spec expressible on abstract domains satisfying the hypothesis

of Theorem 4.10 can be proved with no false alarms (Theorem 2.7) by using some computation-

ally less expensive non-relational abstract domains (e.g., Int). In case Spec is not expressible, we
can always overapproximate 𝑆𝑝𝑒𝑐 in that domain. Our result ensures the existence of a complete

abstract interpreter that generates no additional false alarms with respect to this overapproxima-

tion over bounded inputs. Furthermore, the complete-analyzability property could support static

analysis in the context of obfuscated programs [Collberg and Nagra 2009; Kinder 2012; Wagner

2019], e.g., in malware analysis where malware tend to conceal their behavior using obfuscation

techniques [Campion et al. 2021; Dalla Preda et al. 2015; Moser et al. 2007; You and Yim 2010].

Being able to discover program variables that behave monotonically grants us the possibility to

precisely analyze them and, thus, gain a better understanding of the malware’s behavior.

As future work, we plan to investigate the relation between the recently introduced notion of

partial completeness [Campion et al. 2022a,b, 2023] and monotonocity. Allowing a limited non-

monotone behavior of a program over certain variables may be related to a weakening of the notion

of complete-analyzability, thus admitting a partial completeness of the BCA. Moreover, it could be

interesting to formalize a proof system able to underapproximate the set of complete-analyzable

programs for an abstraction and a set of inputs without passing through monotonicity, as done for,

e.g., the local completeness [Ascari et al. 2023; Bruni et al. 2023; Milanese and Ranzato 2022].

The properties of boundedness and convexity, both depending on the program under inspection,

would require dedicated analysis. Although our current work primarily centers on the monotonicity

property, we recognize the importance of exploring these aspects in future investigations. The

boundness analysis involves the study on how to find minimum/maximum points over a set of

inputs and to check termination over them. Convexity may require another analysis in the style of

Section 3 even though there are well known abstract domains composed by only convex properties

that trivially satisfy convexity (e.g., Intervals).

Although Theorem 4.10 considers non-relational abstractions only, we may think of partitioning

the set of program variables in blocks containing monotone variables only and therefore obtaining

a “weakly relational” abstract domain involving relations among only the variables in these blocks.

This could potentially be related to the methods used for decomposing relational numerical abstract

shapes, as considered in [Cousot et al. 2019; Singh et al. 2018].

In our current development, which does not involve data structures like arrays or pointers, the

main source of imprecision in the monotonicity verifier lies within branches and loops: analyzing

the validity of the predicates Boundary and Limit might be complex, and, additionally, they bothmay

turn false even if the program is𝑉 -monotone. This may depend on some factors such as the presence

of non-linear Boolean guards in if-statements and loops as we have not identified an efficient method

to handle them without executing the program under analysis. Further investigation is required to

fine-tune the verifier’s precision in this direction.

There is a considerable amount of research on algorithmic problems for the generation of ranking

functions (e.g., see [Almagor et al. 2021; Ben-Amram et al. 2019; Ben-Amram and Genaim 2014]) for

proving loop termination which is also strongly connected with programmonotonicity. For instance,

it would be interesting to modify the proposed proof system in order to consider a notion of strict𝑉 -

monotonicity (namely, either 𝑉 -increasing or 𝑉 -decreasing). Suppose the guard of the loop has the

form 𝑏 ∈ 𝐿𝑖𝑛+
⋗ and Var (𝑏) ⊆ 𝑉 . In such case, when the loop body is proven to be 𝑉 -decreasing at 𝑆

and every input in 𝑆 has at least a comparable state in 𝑆 (formally ∀𝜎 ∈ 𝑆. ∃𝜎 ′ ∈ 𝑆. 𝜎 < 𝜎 ′∨𝜎 > 𝜎 ′
),

it can be regarded as evidence for the existence of a ranking function among program states 𝑆 , thus

a sufficient condition to establish termination. Moreover, rather than confining monotonicity to

integer numbers, it would be interesting to extend its definition to ordinals, enabling the discovery

of ordinal-based ranking functions for conditional termination proofs. [Urban and Miné 2014a,b].
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