
59

Partial (In)Completeness in Abstract Interpretation
Limiting the Imprecision in Program Analysis

MARCO CAMPION, University of Verona, Italy

MILA DALLA PREDA, University of Verona, Italy

ROBERTO GIACOBAZZI, University of Verona, Italy

Imprecision is inherent in any decidable (sound) approximation of undecidable program properties. In abstract

interpretation this corresponds to the release of false alarms, e.g., when it is used for program analysis and

program verification. As all alarming systems, a program analysis tool is credible when few false alarms

are reported. As a consequence, we have to live together with false alarms, but also we need methods to

control them. As for all approximation methods, also for abstract interpretation we need to estimate the

accumulated imprecision during program analysis. In this paper we introduce a theory for estimating the

error propagation in abstract interpretation, and hence in program analysis. We enrich abstract domains with

a weakening of a metric distance. This enriched structure keeps coherence between the standard partial order

relating approximated objects by their relative precision and the effective error made in this approximation.

An abstract interpretation is precise when it is complete. We introduce the notion of partial completeness as a

weakening of precision. In partial completeness the abstract interpreter may produce a bounded number of

false alarms. We prove the key recursive properties of the class of programs for which an abstract interpreter

is partially complete with a given bound of imprecision. Then, we introduce a proof system for estimating an

upper bound of the error accumulated by the abstract interpreter during program analysis. Our framework is

general enough to be instantiated to most known metrics for abstract domains.

CCS Concepts: · Theory of computation→ Program analysis; Abstraction; Invariants; Computability;

Logic and verification; Denotational semantics; Semantics and reasoning.

Additional Key Words and Phrases: Abstract Interpretation, Abstract Domain, Program Analysis, Partial

Completeness

ACM Reference Format:

Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. 2022. Partial (In)Completeness in Abstract In-

terpretation: Limiting the Imprecision in Program Analysis. Proc. ACM Program. Lang. 6, POPL, Article 59

(January 2022), 31 pages. https://doi.org/10.1145/3498721

1 INTRODUCTION

Program analysis has been studied for over half century and is a major method to aid programmers
and software engineers in producing reliable artifacts. Abstract interpretation [Cousot 2021; Cousot
and Cousot 1977, 1979] is a general theory for the design of sound-by-construction program analysis
tools. The abstract interpreter provides an approximate solution to a system of recursive equations
specifying the semantics of our programming language. Soundness here means that all true alarms
are captured and reported by the analysis but also false-alarms may be reported. The presence of

Authors’ addresses: Marco Campion, Dipartimento di Informatica, University of Verona, Verona, Italy, marco.campion@

univr.it; Mila Dalla Preda, Dipartimento di Informatica, University of Verona, Verona, Italy, mila.dallapreda@univr.it;

Roberto Giacobazzi, Dipartimento di Informatica, University of Verona, Verona, Italy, roberto.giacobazzi@univr.it.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART59

https://doi.org/10.1145/3498721

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-1099-3494
HTTPS://ORCID.ORG/0000-0003-2761-4347
HTTPS://ORCID.ORG/0000-0002-9582-3960
https://doi.org/10.1145/3498721
https://orcid.org/0000-0002-1099-3494
https://orcid.org/0000-0003-2761-4347
https://orcid.org/0000-0002-9582-3960
https://doi.org/10.1145/3498721

59:2 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

false alarms is in this case unavoidable due to the need of program analysis to make decidable an
often undecidable property of interest (e.g. absence of runtime errors, variables values that do not
overflow, etc.).

The abstract interpretation of a program 𝑃 , denoted by J𝑃K𝐴, consists of an abstract domain 𝐴,

often specified by a pair of abstraction 𝛼𝐴 and concretization 𝛾𝐴 maps, and an interpreter J·K𝐴,
designed for the language used to specify 𝑃 and on the abstract domain 𝐴. The structure of the
abstract domain is given by a partial order ≤𝐴 that expresses the relative precision of its objects: If
𝑎, 𝑏 ∈ 𝐴 and 𝑎 ≤𝐴 𝑏 then 𝑏 over approximates 𝑎. Soundness means that if program 𝑃 satisfies the

condition J𝑃K𝐴𝛼𝐴 (𝑆) ≤𝐴 𝑄 for the input 𝑆 and output specification 𝑄 , then J𝑃K𝑆 ⊆ 𝛾𝐴 (𝑄). When
the converse holds we have precision, or completeness of the abstract interpreter, and therefore of
the analysis. This represents the ideal situation where no false alarms are produced. Completeness,
however, is a very rare condition to be satisfied in practice. Abstract domains can be refined (e.g.,
see [Giacobazzi et al. 2000]) in order to achieve completeness but, as observed by Giacobazzi et al.
[2015], the completeness refinement may result in a way too concrete abstract domain, making the
abstract interpreter inefficient if not boiling down to the concrete interpretation.

The problem. In practice we need to deal with incompleteness [Distefano et al. 2019]. The
experience tells us that there are results that are łmore incompletež, i.e., less precise, than others,
and this depends upon the way the program is written and the way the abstract interpreter is
implemented [Bruni et al. 2020]. Consider the following programs 𝑃 ≜ while 𝑥 > 0 do 𝑥 := 𝑥 − 1,

𝑄 ≜ while 𝑥 > 1 do 𝑥 := 𝑥 −2, and 𝑅 ≜ while 𝑥 > 1 do 𝑥 := 𝑥 −2 endw; if 𝑥 = 1 then 𝑥 := 100.

Consider the input property {10} for the variable 𝑥 . It is clear that J𝑃K{10} = J𝑄K{10} = J𝑅K{10} =
{0}. However, when 𝑃 , 𝑄 , and 𝑅 are analyzed by an abstract interpreter defined on the abstract
domain of intervals Int [Cousot and Cousot 1977], they exhibit different levels of imprecision. Recall
that Int abstracts sets of integer values and it contains all intervals [𝑎, 𝑏] such that 𝑎 ∈ Z ∪ {−∞},
𝑏 ∈ Z∪{+∞} and 𝑎 ≤ 𝑏. If 𝛼Int : ℘(Z) → Int is the abstraction function approximating any property
of integers into the closest interval containing it, then for instance 𝛼Int ({−3, 0, 2}) = [−3, 2] and

𝛼Int ({Z≥1}) = [1, +∞]. For the programs above we have: J𝑃KInt𝛼Int ({10}) = 𝛼Int (J𝑃K{10}) = [0, 0],

J𝑄KInt𝛼Int ({10}) = [0, 1], and J𝑅KInt𝛼Int ({10}) = [0, 100]. While J𝑃KInt𝛼Int ({10}) is complete, i.e.,

J𝑃KInt𝛼Int ({10}) = 𝛼Int (J𝑃K𝛾Int (𝛼Int ({10}))) = 𝛼Int (J𝑃K[10, 10]), both 𝑄 and 𝑅 are incomplete, but
the first is definitively less precise than the second on the abstract domain Int: [0, 1] ⊂ [0, 100].
As always in approximate methods, e.g., in numerical analysis, we would like to measure the

imprecision accumulated during program analysis. The standard abstract interpretation framework
does not allow us to compare the degree of imprecision of the resulting abstract semantics. Pre-
liminary results in this direction introduced domain-specific measures of imprecision for static
analysis, see Section 8 for related works. However, the lack of a general method to model the way
the error propagates during abstract interpretation makes extremely difficult to establish bounds
on the accumulated error, and hence of the possible amount of false alarms, in program analysis.

Main contribution. In this paper, we formalize the notion of limiting imprecision in abstract
interpretation.We consider a weaker form ofmetric function that is made specific for the elements of
an abstract domain, namely it is compatible with the underlying ordering relation ≤𝐴, hence taking
into account the presence of incomparable elements. In the previous example, we can consider
the distance in Int to be the length of the minimum path between two comparable intervals in
the lattice of intervals when finite, otherwise the distance is set to ∞. For the program 𝑃 above,
the distance between [0, 0] and [0, 1] is 1 while the distance between [0, 1] and [0, 100] is 100.
Intuitively, this simple metric encodes the number of spurious elements added in the output of the
abstract execution w.r.t. the abstraction of the concrete one.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:3

This idea formalizes the intuition that the abstract computation of an abstract interpreter for a
program 𝑄 with input {10} is more imprecise than the abstract semantics 𝛼Int (J𝑄K𝛾Int (𝛼Int ({10}))),
which is not by chance said best correct approximation (bca for short) of J𝑄K{10}. Same happens
for 𝑅, which is less precise than 𝑄 . By exploiting this idea we can introduce the notion of 𝜀-partial
completeness of an abstract domain 𝐴 with respect to a given program and a given (set of) input
values. A partially complete abstract interpretation allows some false-alarms to be reported, but
their number is bounded. In this case the imprecision of the abstract interpreter is bounded by 𝜀,
namely, the distance between the results of the abstraction of the concrete semantics and the result
of the abstract interpretation on the given input, is at most 𝜀.

In Section 3 we introduce the notion of quasi-metric𝐴-compatible with respect to a given abstract
domain 𝐴. The notion of 𝜀-partial completeness for an abstract interpreter defined on an abstract
domain enriched with a 𝐴-compatible quasi-metric is introduced in Section 4. This corresponds to
a weakening of the notion of local completeness in abstract interpretation as introduced in [Bruni
et al. 2021], which is in turn a further weakening of standard (global) completeness [Cousot and
Cousot 1979; Giacobazzi et al. 2000]. Indeed, any program complete for 𝐴 is also 𝜀-partial complete
for all 𝜀 ≥ 0. In Section 6 we study the main recursive properties of the class of all programs
for which an abstract interpreter is 𝜀-partial complete. We show that these classes are infinite,
in general non-extensional, sets, i.e., they do not form an index-set of partial recursive functions
[Rogers 1992]. We also prove that the distance chosen for measuring the relative imprecision
between abstract elements, plays an important role in the class of partial completeness. If for every
𝜀 and input 𝑆 we can always find an element whose distance from ⊥𝐴 is strictly greater than 𝜀,
then we can always constructively build a program that is outside the 𝜀-partial completeness class.
An abstract domain satisfying the above condition will be said holding unlimited imprecision. We
also prove that if we consider non-𝜀-trivial abstract domains (i.e., abstract domains endowed with a
𝐴-compatible distance whose 𝜀-partial completeness class is different from the set of all possible
programs) with unlimited imprecision, then for any bound 𝜀, the 𝜀-partial incompleteness class is a
non-recursively enumerable set. The same result is obtained for the 𝜀-partial completeness when 𝐴

has infinite ascending chains and is non-𝜀-trivial. This means that, in general, we cannot automate
the procedure of deciding whether the abstract interpretation of a given program on a given input
satisfy a given precision bound. For this reason, in Section 7, we introduce a sound proof system
that is able to derive Hoare-like triples ⊢𝑨 [Pre] 𝑃 [Post, 𝜀] asserting that, the abstraction of the
post-condition Post has a distance at most 𝜀 from the abstraction of the concrete semantics of 𝑃
on input Pre. The value 𝜀 next to the post-condition can be interpreted as an upper bound for the
imprecision accumulated during the computation of the abstract interpreter of the program 𝑃 with
input Pre. By instantiating the post-condition with the output of our abstract interpreter, i.e., proving

⊢𝑨 [Pre] 𝑃 [𝛾𝐴 (J𝑃K𝐴𝛼𝐴 (Pre)), 𝜀], we can prove that 𝑃 with input Pre belongs to the 𝜀-partial
completeness class. The same applies for proving an upper bound for the imprecision of the bca
w.r.t. the concrete semantics, namely, ⊢𝑨 [Pre] 𝑃 [𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (Pre))), 𝛽]. By a slight adjustment
of the rules of our proof system for the basic commands (viz., assignments and boolean guards), we
obtain a new proof system denoted ⊩𝑨, that can soundly prove the upper bound of imprecision

between the bca and the abstract interpreter, i.e., ⊩𝑨 [𝛾𝐴 (𝛼𝐴 (Pre))] 𝑃 [𝛾𝐴 (J𝑃K𝐴𝛼𝐴 (Pre)), 𝜂]. By
exploiting both ⊢𝑨 and ⊩𝑨, we can infer three different upper bounds of inaccuracy between: The
concrete computation, the bca, and the abstract interpreter. Section 8 discusses the most relevant
related works and Section 9 concludes and highlights future works.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:4 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

2 BACKGROUND

2.1 Order and Measure Theory

Sets. Given two sets 𝑆 and 𝑇 , ℘(𝑆) denotes the powerset of 𝑆 , 𝑆 ∖𝑇 denotes the set-difference

between 𝑆 and 𝑇 , 𝑆 denotes the complement of 𝑆 with respect to some universe set determined by
the context, 𝑆 ⊆ 𝑇 denotes sets inclusion while 𝑆 ⊂ 𝑇 (or 𝑆 ⊊ 𝑇) denotes strict sets inclusion, |𝑆 |
denotes the cardinality where 𝑆 is finite if |𝑆 | < 𝜔 , countably infinite if |𝑆 | = 𝜔 , countable if |𝑆 | ≤ 𝜔 .
A binary relation ∼ over a set 𝑆 is a subset of the Cartesian product ∼⊆ 𝑆 × 𝑆 . We will emphasize
the set 𝑆 on which a binary relation ∼ is defined by the subscript ∼𝑆 except for the straightforward
equivalence relation = unless it has a different definition. We denote with N, Q and R the sets of
all, respectively, natural, rational and real numbers. We will use subscripts in order to limit their
range, while the superscript symbol∞ denotes the inclusion of the infinite symbol. For example,
Q∞

≥0 denotes the set of all non-negative rational numbers with the infinity element. As calculation
rules, any sum or difference that involves the symbol ∞, returns∞.

Functions. We denote with 𝑓 : 𝑆 → 𝑇 a totally defined function and with 𝑓 : 𝑆 ↦→ 𝑇 a partially
defined function. If 𝑓 : 𝑆 ↦→ 𝑇 then 𝑓 (𝑥) ↓ denotes that 𝑓 (𝑥) is defined, 𝑑𝑜𝑚(𝑓) ≜ {𝑥 ∈ 𝑆 | 𝑓 (𝑥) ↓}

denotes the domain of 𝑓 , and given a subset𝑋 ⊆ 𝑆 , 𝑓 (𝑋) ≜ {𝑓 (𝑥) ∈ 𝑇 | 𝑥 ∈ 𝑋∩𝑑𝑜𝑚(𝑓)} denotes the

image of 𝑓 on 𝑋 , where 𝑓 is defined. Two partial functions 𝑓 , 𝑔 : 𝑆 ↦→ 𝑇 are extensionally equivalent,
denoted by 𝑓 � 𝑔, if 𝑑𝑜𝑚(𝑓) = 𝑑𝑜𝑚(𝑔) and for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓) = 𝑑𝑜𝑚(𝑔), 𝑓 (𝑥) = 𝑔(𝑥). Sometimes
we use a 𝜆-notation 𝜆𝑥 .𝑓 (𝑥) to emphasize the arguments of a function 𝑓 . Given 𝑓 : 𝑆 ↦→ 𝑇 and
𝑔 : 𝑇 ↦→ 𝑈 , 𝑔 ◦ 𝑓 : 𝑆 ↦→ 𝑈 denotes their composition, where 𝑔 ◦ 𝑓 (𝑥) = 𝑔(𝑓 (𝑥)) when 𝑓 (𝑥) ↓ and
𝑔(𝑓 (𝑥)) ↓, otherwise 𝑔 ◦ 𝑓 is not defined on 𝑥 , denoted 𝑔(𝑓 (𝑥)) ↑.

Measure and Metric. A 𝜎-algebra on a set 𝑋 is a collection of subsets of 𝑋 that includes 𝑋 itself,
is closed under complement and is closed under countable unions. The definition implies that
it also includes the empty set ∅ and that it is closed under countable intersections. Consider a
𝜎-algebra 𝐴 over 𝑋 . The tuple (𝑋,𝐴) is called a measurable space. A measure is a non-negative
countably additive set function. A function 𝜇 : 𝐴 → R∞≥0 is called a measure if it satisfies the
following properties: (1) ∀𝑆 ∈ 𝐴. 𝜇 (𝑆) ≥ 0 (non-negativity); (2) 𝜇 (∅) = 0 (null empty set); (3) if
𝑆𝑖 ∈ 𝐴 is a countable sequence of disjoint sets, then 𝜇 (

⋃
𝑖 𝑆𝑖) =

∑
𝑖 𝜇 (𝑆𝑖) (countable additivity). The

triple (𝑋,𝐴, 𝜇) is called ameasure space. Ametric is a function that defines a distance between pairs
of elements of a set 𝑆 . A metric on a non-empty set 𝑆 is a map 𝑑 : 𝑆 × 𝑆 → R≥0 that ∀𝑥,𝑦, 𝑧 ∈ 𝑆

satisfies (1) the identity of indiscernibles 𝑑 (𝑥,𝑦) = 0 ⇔ 𝑥 = 𝑦, (2) symmetry 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥), (3)
triangle inequality 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧) ≥ 𝑑 (𝑥, 𝑧). A set provided with a metric is called metric space.

Order theory. A set 𝐿 endowed with a partial order relation ≤𝐿 is called a partially ordered set, or
briefly poset, and it is denoted by ⟨𝐿, ≤𝐿⟩. We will use also the strict poset relation <𝐿 such that
for all 𝑥,𝑦 ∈ 𝐿, 𝑥 <𝐿 𝑦 iff 𝑥 ≤𝐿 𝑦 and 𝑥 ≠ 𝑦. We say that 𝑦 covers 𝑥 , written 𝑥 ⋖𝐿 𝑦, if 𝑥 < 𝑦 and
there is no element 𝑧 ∈ 𝐿 such that 𝑥 < 𝑧 < 𝑦. A subset 𝑌 ⊆ 𝐿 of a poset 𝐿 = ⟨𝐿, ≤𝐿⟩ is a chain
if for all 𝑦1, 𝑦2 ∈ 𝑌 , 𝑦1 ≤𝐿 𝑦2 or 𝑦2 ≤𝐿 𝑦1. A sequence (𝑙𝑛)𝑛∈N = {𝑙𝑛 | 𝑛 ∈ N} of elements in 𝐿 is
an ascending chain if 𝑛 ≤ 𝑚 implies 𝑙𝑛 ≤𝐿 𝑙𝑚 . Similarly, a sequence (𝑙𝑛)𝑛 is a descending chain if
𝑛 ≤ 𝑚 implies 𝑙𝑚 ≤𝐿 𝑙𝑛 . A sequence (𝑙𝑛)𝑛∈N eventually stabilizes if and only if there exists 𝑛0 ∈ N
such that for every 𝑛 ∈ N: 𝑛 ≥ 𝑛0 implies 𝑙𝑛 = 𝑙𝑛0 . A poset 𝐿 has finite height if and only if all
chains are finite. 𝐿 satisfies the Ascending Chain Condition (ACC) if and only if all ascending chains
eventually stabilize. Similarly, it satisfies the Descending Chain Condition (DCC) if and only if all
descending chains eventually stabilize. 𝐿 satisfies both the ACC and DCC if and only if it has finite
height. A poset ⟨𝐿, ≤𝐿⟩ is called a join-semilattice if each two-element subset {𝑎, 𝑏} ⊆ 𝐿 has a join
(i.e. least upper bound), and is called a meet-semilattice if each two-element subset has a meet (i.e.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:5

greatest lower bound), denoted by 𝑎 ∨𝐿 𝑏 and 𝑎 ∧𝐿 𝑏 respectively. ⟨𝐿, ≤𝐿⟩ is called a lattice if it is
both a join- and a meet-semilattice. This definition makes ∨𝐿 and ∧𝐿 binary operations. A lattice
⟨𝐿, ≤𝐿⟩ is complete when for all subsets 𝑋 ⊆ 𝐿, arbitrary lubs

∨
𝐿 𝑋 and glbs

∧
𝐿 𝑋 exist in 𝐿 (empty

subset included). A complete lattice 𝐿 with partial order ≤𝐿 , lub ∨𝐿 , glb ∧𝐿 , greatest element (top)
⊤𝐿 , and least element (bottom) ⊥𝐿 is denoted by ⟨𝐿, ≤𝐿,∨𝐿,∧𝐿,⊤𝐿,⊥𝐿⟩.
A function 𝑓 : 𝐿 → 𝐿 over a poset ⟨𝐿, ≤𝐿⟩ is monotone if for all 𝑥,𝑦 ∈ 𝐿 such that 𝑥 ≤𝐿 𝑦, 𝑓

preserves the order, i.e., 𝑓 (𝑥) ≤𝐿 𝑓 (𝑦). Moreover, 𝑓 is idempotent if for every 𝑥 ∈ 𝐿. 𝑓 (𝑓 (𝑥)) = 𝑓 (𝑥),
increasing if 𝑥 ≤𝐿 𝑓 (𝑥). If 𝑓 , 𝑔 : 𝑆 → 𝐿 and ⟨𝐿, ≤𝐿⟩ is a poset then the pointwise partial order
relation is defined by: 𝑓 ⊑ 𝑔 when for all 𝑥 ∈ 𝑆 , 𝑓 (𝑥) ≤𝐿 𝑔(𝑥). If 𝐿 is a (complete) lattice then
⟨𝑆 → ⟨𝐿, ≤𝐿⟩⟩ is a (complete) lattice. A function 𝑓 : 𝐿1 → 𝐿2 between complete lattices is additive
(co-additive) if for all 𝑌 ⊆ 𝐿1, 𝑓 (∨𝐿1𝑌) = ∨𝐿2 𝑓 (𝑌) (𝑓 (∧𝐿1𝑌) = ∧𝐿2 𝑓 (𝑌)). Also, 𝑓 is continuous (co-
continuous) when 𝑓 preserves lubs (glbs) of chains in 𝐿1. The KnasterśTarski theorem guarantees
that if 𝐿 is a complete lattice and 𝑓 : 𝐿 → 𝐿 a monotone function, then the set of fixpoints of 𝑓 in 𝐿

is also a complete lattice. As a consequence, since complete lattices cannot be empty (they must
contain supremum of empty set), the theorem in particular guarantees the existence of at least one
fixpoint of 𝑓 , and even the existence of a least (or greatest) fixpoint, denoted lfp(𝑓) (resp. gfp(𝑓)).
Moreover, if 𝑓 : 𝐿 → 𝐿 is continuous then lfp(𝑓) =

∨
𝐿 𝑛∈N 𝑓

𝑛 (⊥𝐿), where, for all 𝑛 ∈ N and 𝑥 ∈ 𝐿,
𝑓 𝑛 is inductively defined by: 𝑓 0 (𝑥) ≜ 𝑥 and 𝑓 𝑛+1 (𝑥) ≜ 𝑓 (𝑓 𝑛 (𝑥)).

2.2 Abstract Interpretation

We consider here the standard abstract interpretation framework as defined by Cousot and Cousot
[1977, 1979, 1992a] and based on the correspondence between a domain of concrete or exact
properties and a domain of abstract or approximate properties.

Abstract Domains. Abstract domains (also called abstractions) are specified by Galois connection-
s/insertions (GCs/GIs for short). In program analysis, concrete and abstract domains are assumed to
be complete lattices, resp. ⟨𝐶, ≤𝐶⟩ and ⟨𝐴, ≤𝐴⟩, which are related by abstraction and concretization
maps 𝛼𝐴 : 𝐶 → 𝐴 and 𝛾𝐴 : 𝐴 → 𝐶 that give rise to a GC (𝛼𝐴,𝐶,𝐴,𝛾𝐴), that is, for all 𝑎 ∈ 𝐴 and
𝑐 ∈ 𝐶: 𝛼𝐴 (𝑐) ≤𝐴 𝑎 ⇔ 𝑐 ≤𝐶 𝛾𝐴 (𝑎), where we use the subscript to functions 𝛼𝐴 and 𝛾𝐴 in order to
emphasize the abstract domain 𝐴 considered. A GC is a GI when 𝛼𝐴 ◦𝛾𝐴 = 𝜆𝑥 .𝑥 . Let us recall some
basic properties of a GC (𝛼𝐴,𝐶,𝐴,𝛾𝐴): (1) 𝛼𝐴 is additive and 𝛾𝐴 is co-additive; (2) 𝛾𝐴 ◦ 𝛼𝐴 : 𝐶 → 𝐶

is a closure operator, namely, it is a monotone, idempotent and increasing function; (3) if 𝜌 : 𝐶 → 𝐶

is a closure operator then (𝜌,𝐶, 𝜌 (𝐶), 𝜆𝑥 .𝑥) is a GI. In the rest of the paper, we deal with GI which
are standard in abstract interpretation (e.g., Sign, Intervals, Octagons, Ellipsoids, etc.) ensuring the
existence of abstraction functions1. We highlight this hypothesis in the following assumption.

Assumption 1. We consider only GI-based abstract interpretations.

If 𝛼𝐴 : 𝐶 → 𝐴 is an additive function, then it induces a GC (𝛼𝐴,𝐶,𝐴, 𝛼
+
𝐴) where the concretization

𝛼+
𝐴 : 𝐴 → 𝐶 is defined as right-adjoint of 𝛼𝐴, i.e., 𝛼

+
𝐴 (𝑎) ≜ ∨𝐶 {𝑐 ∈ 𝐶 | 𝛼𝐴 (𝑐) ≤𝐴 𝑎}. Dually, if 𝛾𝐴 :

𝐶 → 𝐴 is a co-additive function then (𝛾−𝐴,𝐶,𝐴,𝛾𝐴) is a GC where 𝛾−𝐴 ≜ 𝜆𝑐.∧𝐴 {𝑎 ∈ 𝐴 | 𝑐 ≤𝐶 𝛾𝐴 (𝑎)}

is the left-adjoint of 𝛾𝐴.
We use A(𝐶) to denote all the possible abstractions of a concrete domain 𝐶 satisfying Assump-

tion 1, where 𝐴 ∈ A(𝐶) means that 𝐴 is an abstract domain of 𝐶 defined by some GI which is left
unspecified. An abstract domain 𝐴 ∈ A(𝐶) is called strict if 𝛾𝐴 (⊥𝐴) = ⊥𝐶 . We say that an element
𝑐 ∈ 𝐶 is exactly represented in 𝐴 if 𝛾𝐴 (𝛼𝐴 (𝑐)) = 𝑐 . If 𝐴1, 𝐴2 ∈ A(𝐶) then 𝐴1 is equivalent to 𝐴2,
denoted by 𝐴1 ∼A(𝐶) 𝐴2, when 𝛾𝐴1 (𝐴1) = 𝛾𝐴2 (𝐴2). The quotient A(𝐶)/∼A(𝐶)

is called the lattice

1Weaker forms of abstract interpretation are possible, e.g., lacking the abstraction as in polyhedra, but this makes the

framework too weak to prove some results presented in Section 6 (more specifically, Theorem 6.11 and Theorem 6.16).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:6 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

of abstractions because it turns out to be a complete lattice w.r.t. the relative precision ordering:
𝐴1 ≤A(𝐶) 𝐴2 iff for all 𝑐 ∈ 𝐶 , 𝛾𝐴1

(𝛼𝐴1
(𝑐)) ≤𝐶 𝛾𝐴2

(𝛼𝐴2
(𝑐)). Thus, 𝐴1 ≤A(𝐶) 𝐴2 means that 𝐴1 is a

more precise abstraction than 𝐴2, or, equivalently, that 𝐴2 abstracts 𝐴1. The following are abstract
domain examples of A(℘(Z)).

Example 2.1. The Sign ≜ {Z,−, 0, +,∅} and Parity ≜ {Z, even, odd,∅} abstract domains for, re-
spectively, sign and parity analysis of integer variables, are a straightforward non-relational ab-
stractions of ⟨℘(Z), ⊆⟩ [Cousot and Cousot 1976], i.e., Sign, Parity ∈ A(℘(Z)), where the order
relation ≤Sign is defined as ∅ <Sign 0 <Sign − <Sign Z and ∅ <Sign 0 <Sign + <Sign Z, while
∅ <Parity even <Parity Z and ∅ <Parity odd <Parity Z. The abstraction maps 𝛼Sign : ℘(Z) → Sign and
𝛼Parity : ℘(Z) → Parity are defined by:

𝛼Sign (𝑋) ≜




∅ if 𝑋 = ∅,

0 if 𝑋 = {0},

+ if ∀𝑥 ∈ 𝑋 . 𝑥 ≥ 0,

− if ∀𝑥 ∈ 𝑋 . 𝑥 ≤ 0,

Z otherwise

𝛼Parity (𝑋) ≜




∅ if 𝑋 = ∅,

even if ∀𝑥 ∈ 𝑋 . 𝑥 mod 2 = 0,

odd if ∀𝑥 ∈ 𝑋 . 𝑥 mod 2 ≠ 0,

Z otherwise.

where mod is the integer modulo operation. ■

Example 2.2. The interval abstraction Int [Cousot and Cousot 1976] is a widely used non-
relational abstraction since it is efficient and yet able to give useful information to prove, e.g.,
the absence of arithmetic overflows or out-of-bounds array accesses. Let Z∗ ≜ Z ∪ {−∞, +∞} and

assume that the standard ordering ≤ on Z is extended to Z∗ in the usual way. Hence:

Int ≜ {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ Z∗, 𝑎 ≤ 𝑏} ∪ {⊥Int}

endowed with the standard ordering ≤Int induced by the interval containment gives rise to a
complete lattice, where ⊥Int is the bottom element and ⊤Int ≜ [−∞, +∞] is the top element. We

have that Int ∈ A(℘(Z)). Consider the function 𝑚𝑖𝑛 : ℘(Z) → Z∗ defined as 𝑚𝑖𝑛(𝑋) ≜ 𝑥 if

∃𝑥 ∈ 𝑋 . ∀𝑦 ∈ 𝑋 . 𝑥 ≤ 𝑦, while𝑚𝑖𝑛(𝑋) ≜ −∞ otherwise, and the function𝑚𝑎𝑥 : ℘(Z) → Z∗ dually

defined. The abstraction map 𝛼Int : ℘(Z) → Int is defined by:

𝛼Int (𝑋) ≜

{
⊥Int if 𝑋 = ∅,

[𝑚𝑖𝑛(𝑋),𝑚𝑎𝑥 (𝑋)] otherwise.

Note that 𝛼Int preserves arbitrary unions in ℘(Z) and therefore gives rise to a GI. ■

Abstract semantics: Correctness and completeness. Let 𝑓 : 𝐶 → 𝐶 be a concrete monotone
(transfer) functionÐto keep notation simple, we consider unary functionsÐand let 𝑓 ♯ : 𝐴 → 𝐴 be a

corresponding monotone abstract (transfer) function defined on some abstraction 𝐴 ∈ A(𝐶). Then,
𝑓 ♯ is a correct (or sound) approximation of 𝑓 on𝐴 when 𝛼𝐴 ◦ 𝑓 ≤𝐴 𝑓 ♯ ◦ 𝛼𝐴 holds. If 𝑓 ♯ is correct for

𝑓 then least fixpoint correctness holds, that is, 𝛼𝐴 (lfp(𝑓)) ≤𝐴 lfp(𝑓 ♯) holds. The abstract function

𝑓 𝛼 ≜ 𝛼𝐴 ◦ 𝑓 ◦ 𝛾𝐴 : 𝐴 → 𝐴 is called the best correct approximation (bca) of 𝑓 on 𝐴, because it turns

out that any abstract function 𝑓 ♯ is a correct approximation of 𝑓 iff 𝑓 𝛼 ≤𝐴 𝑓 ♯. Hence, 𝑓 𝛼 plays the

role of the best possible correct approximation of 𝑓 on 𝐴.
An abstract function 𝑓 ♯ : 𝐴 → 𝐴 is a complete approximation of 𝑓 on 𝐴 when 𝛼𝐴 ◦ 𝑓 = 𝑓 ♯ ◦ 𝛼𝐴

holds [Cousot and Cousot 1979]. Our definition of completeness corresponds to the backward
completeness defined by Giacobazzi et al. [2000]. When 𝑓 ♯ is an abstract transfer function on𝐴 used
in some static program analysis algorithm, completeness intuitively encodes an optimal precision
for 𝑓 ♯, meaning that the abstract behavior of 𝑓 ♯ on 𝐴 exactly matches the abstraction in 𝐴 of the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:7

concrete behaviour of 𝑓 . If 𝑓 ♯ is complete for 𝑓 then least fixpoint completeness holds (also called

fixpoint transfer), i.e., 𝛼𝐴 (lfp(𝑓)) = lfp(𝑓 ♯) holds. It turns out that completeness 𝛼𝐴 ◦ 𝑓 = 𝑓 ♯ ◦ 𝛼𝐴
holds iff 𝛼𝐴 ◦ 𝑓 = 𝛼𝐴 ◦ 𝑓 ◦ 𝛾𝐴 ◦ 𝛼𝐴 = 𝑓 𝛼 ◦ 𝛼𝐴 holds. Thus, the possibility of defining a complete
approximation 𝑓 ♯ of 𝑓 on some 𝐴 ∈ A(𝐶) only depends upon the concrete function 𝑓 and the

abstraction𝐴, that is, 𝑓 𝛼 is the only possible option as complete approximation of 𝑓 . In the following,

we write both ł𝐴 is complete for 𝑓 ž and ł𝑓 is complete for 𝐴ž for 𝛼𝐴 ◦ 𝑓 = 𝑓 𝛼 ◦ 𝛼𝐴.

3 QUASI-METRICS ON ABSTRACT DOMAINS

Our goal is to derive the bound of imprecision of an abstract interpreter with respect to a given
measure over the abstract domain. For this reason, we need a metric to compare the elements of
the abstract domain according to their relative degree of precision. Roughly, a metric allows us
to measure the distance between elements in a given set. Intuitively, when applied to an abstract
domain𝐴 ∈ A(𝐶), we would like to have a distance 𝑑 : 𝐴×𝐴 → R≥0 which is somehow compatible
with the underlying partial order ≤𝐴. For instance, if 𝑎1 ≤𝐴 𝑎2 ≤𝐴 𝑎3 with 𝑎1, 𝑎2, 𝑎3 ∈ 𝐴, then we
would expect that 𝑑 (𝑎1, 𝑎2) ≤ 𝑑 (𝑎1, 𝑎3).

The classical definition of distance in measure theory does not work in this situation because in
a metric space all pairs of elements can be compared. We relax the classical notion of distance on
sets and conjugate it with the underlying order of the elements of an abstract domain.
We refer to the weaker notion of quasi-metric introduced by Wilson [1931] on a non-empty

set 𝑆 . This is a metric function 𝛿 : 𝑆 × 𝑆 → R≥0 whose symmetry property may not hold. A set
endowed with a quasi-metric is called quasi-metric space. We adapt this definition of quasi-metric in
order to cope with the structure of an abstract domain 𝐴 ∈ A(𝐶) as poset of approximate program
properties.

Definition 3.1 (Quasi-metrics 𝑨-compatible). Let 𝐴 ∈ A(𝐶) be an abstract domain with
ordering relation ≤𝐴. We say that 𝛿𝐴 : 𝐴 ×𝐴 → R∞≥0 ∪ {⊥} is a quasi-metric 𝐴-compatible if for all
𝑎1, 𝑎2, 𝑎3 ∈ 𝐴, it satisfies the following axioms:

(i) 𝑎1 = 𝑎2 ⇔ 𝛿𝐴 (𝑎1, 𝑎2) = 0 (identity of indiscernibles)

(ii) 𝑎1 ≤𝐴 𝑎2 ⇔ 𝛿𝐴 (𝑎1, 𝑎2) ≠ ⊥ (approximation)

(iii) 𝑎1 ≤𝐴 𝑎2 ≤𝐴 𝑎3 ⇒ 𝛿𝐴 (𝑎1, 𝑎3) ≤ 𝛿𝐴 (𝑎1, 𝑎2) + 𝛿𝐴 (𝑎2, 𝑎3) (weak triangle inequality)

□

Here, for all 𝜀 ∈ R≥0: 𝜀 < ∞. We allow the quasi-metric between two uncomparable elements to be
⊥, which represents an undefined distance. Informally, we say that 𝑎1 is approximated by 𝑎2 if and
only if the quasi-metric 𝐴-compatible between 𝑎1 and 𝑎2 is defined. The value of the distance 𝛿𝐴
between two elements can be interpreted as the error introduced by the approximation: The lower is

the value of the error 𝛿𝐴 (𝑎1, 𝑎2), the better is the approximation. The value 𝛿𝐴 (𝑎1, 𝑎2) = ⊥ expresses
naturally the fact that 𝑎2 does not approximate 𝑎1, i.e., 𝑎1 ≰𝐴 𝑎2, while equal elements will always
have a null quasi-distance. Note that, for every quasi-metric𝐴-compatible, the approximation axiom
implies 𝛿𝐴 to embody the underlying poset structure and therefore ≤𝐴 induces the quasi-metric
𝛿𝐴. We can now adapt the general definition of quasi-metric space to the definition of abstract
quasi-metric space.

Definition 3.2 (Abstract quasi-metric spaces). An abstract domain 𝐴 ∈ A(𝐶) endowed with a
quasi-metric 𝐴-compatible 𝛿𝐴, forms an abstract quasi-metric space, denoted by 𝑨 ≜ (𝐴, 𝛿𝐴). We

use 𝔄(𝐶) to refer to the the set of all abstract quasi-metric spaces, and write 𝑨 ∈ 𝔄(𝐶). □

Let us give some examples of quasi-metrics. We formalize the weighted path-length distance which
considers a discrete lattice 𝐴 as a weighted directed graph. Let 𝐸𝐴 ⊆ 𝐴 ×𝐴 be the set of all pairs

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:8 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

Z

−+ oddeven

(even, +) (even,−) (odd, +) (odd,−)

0

∅

Fig. 1. P ⊓ S abstract domain

(𝑎, 𝑏) such that 𝑎 ⋖𝐴 𝑏. Let 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≠ 𝑏, we denote with ℭ𝑏
𝑎 the set of all possible chains

c ⊆ 𝐸 such that if (𝑐, 𝑑) ∈ c then 𝑎 ≤𝐴 𝑐 ⋖𝐴 𝑑 ≤𝐴 𝑏. It is clear that if 𝑎 ≰𝐴 𝑏 then ℭ𝑏
𝑎 = ∅.

Definition 3.3 (Weighted path-length). Let 𝔴 : 𝐸𝐴 → R>0 be a weight function. We define
𝛿𝔴 : 𝐴 ×𝐴 → R∞≥0 ∪ {⊥} with 𝐴 ∈ A(𝐶) such that for every 𝑎, 𝑏 ∈ 𝐴:

𝛿𝔴 (𝑎, 𝑏) ≜




0 if 𝑎 = 𝑏,

∞ if ∀c ∈ ℭ𝑏
𝑎 . |c| = 𝜔,

min

{
∑

𝑒∈c𝔴(𝑒)

����
c ∈ ℭ𝑏

𝑎

|c| < 𝜔

}
if ∃c ∈ ℭ𝑏

𝑎 . |c| < 𝜔,

⊥ if ℭ𝑏
𝑎 = ∅.

□

It is easy to note that the previous definition fulfills axioms (i)-(iii) of Definition 3.1.

Proposition 3.4. For all 𝐴 ∈ A(𝐶), 𝛿𝔴
𝐴
is a quasi-metric 𝐴-compatible.

Intuitively, 𝛿𝔴
𝐴
reflects exactly the underlying abstract domain structure. It counts the minimum

weighted path w.r.t. 𝔴 of intermediate elements between two comparable elements of an abstract
domain 𝐴. Note that 𝛿𝔴

𝐴
does not satisfy symmetry and it relates only elements that belong to

the same chain. It is clear that 𝛿𝔴
𝐴
refines the standard metric associated with the partial order

on 𝐴, providing a quantitative value to the length of chains separating abstract objects in 𝐴. The
following are examples of 𝛿𝔴

𝐴
instantiated for 𝐴 ∈ {Sign, P ⊓ S, Int}.

Example 3.5. Consider the Sign ≜ {Z,−, 0, +,∅} abstract domain shown in Example 2.1. For all

(𝑎, 𝑏) ∈ 𝐸Sign, let𝔴(𝑎, 𝑏) ≜ 1. Then, the weighted path-length 𝛿𝔴
Sign

is a quasi-metric Sign-compatible
and the pair (Sign, 𝛿𝔴

Sign
) ∈ 𝔄(℘(Z)) forms an abstract quasi-metric space. The following are exam-

ples of evaluations of 𝛿𝔴
Sign

on some elements of Sign: 𝛿𝔴
Sign

(+, +) = 0, 𝛿𝔴
Sign

(∅, 0) = 1, 𝛿𝔴
Sign

(0,Z) = 2,
𝛿𝔴
Sign

(∅,Z) = 3, 𝛿𝔴
Sign

(Z,∅) = ⊥, 𝛿𝔴
Sign

(+,−) = 𝛿𝔴
Sign

(−, +) = ⊥. ■

Example 3.6. Consider the abstract domain P ⊓ S ∈ A(℘(Z)), shown in Fig. 1, which is the
reduced product of Sign and Parity abstract domains [Cousot and Cousot 1979]. Let𝔴(∅, (odd, +)) =

𝔴(∅, (odd,−)) ≜ 2 while 1 for the remaining pairs in 𝐸P⊓S. Then, the weighted path-length 𝛿𝔴
P⊓S

is
a quasi-metric P ⊓ S-compatible. ■

Example 3.7. Consider the abstract domain of intervals Int ∈ A(℘(Z)), shown in Example 2.2.
For every (𝑎, 𝑏) ∈ 𝐸Int, let 𝔴(𝑎, 𝑏) ≜ 1. Then, the weighted path-length 𝛿𝔴

Int
is a quasi-metric Int-

compatible. The intuition of 𝛿𝔴
Int

is to count how many more elements one interval has w.r.t. another
one. That is, if 𝑖1, 𝑖2 ∈ Int and 𝛿𝔴

Int
(𝑖1, 𝑖2) = 𝑘 for some 𝑘 ∈ N, then the interval 𝑖2 contains exactly 𝑘

more elements than 𝑖1. ■

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:9

As another class of distance measure, we consider measurable spaces. Let𝐶 be a concrete domain
that forms a 𝜎-algebra over a set 𝑋 , i.e., 𝐶 ⊆ ℘(𝑋), then the pair (𝑋,𝐶) is a measurable space. We
can build over (𝑋,𝐶) a measure function 𝜇 : 𝐶 → R∞≥0 that allows us to measure the distance
between some property of interest in 𝐶 , hence defining a quasi-metric 𝐴-compatible for 𝐴 ∈ A(𝐶)

based on (𝑋,𝐶, 𝜇).

Definition 3.8 (𝝁-distance). Let (𝑋,𝐶, 𝜇) be a measure space and 𝐴 ∈ A(𝐶). For all 𝑆
♯
1 , 𝑆

♯
2 ∈ 𝐴,

we define 𝛿𝜇 : 𝐴 ×𝐴 → R∞≥0 ∪ {⊥} as:

𝛿𝜇 (𝑆
♯
1 , 𝑆

♯
2) ≜

{
𝜇 (𝛾𝐴 (𝑆

♯
2)) − 𝜇 (𝛾𝐴 (𝑆

♯
1)) if 𝑆

♯
1 ≤𝐴 𝑆

♯
2 ,

⊥ otherwise.

□

Example 3.9. Let us consider the measure space (Z, ℘(Z), 𝜇𝑐), where 𝜇𝑐 is the counting measure
such that, for all 𝑆 ∈ ℘(Z), 𝜇𝑐 (𝑆) ≜ |𝑆 | if |𝑆 | < 𝜔 and∞ otherwise. Let us consider also the abstract
domain Int ∈ A(℘(Z)). Then 𝛿

𝜇𝑐

Int
is a quasi-metric Int-compatible. Note that 𝛿

𝜇𝑐

Int
differs from 𝛿𝔴

Int

defined in Example 3.7. For example, 𝛿
𝜇𝑐

Int
([5, +∞], [0, +∞]) = ∞ ≠ 5 = 𝛿𝔴

Int
([5, +∞], [0, +∞]). ■

Example 3.10. Let us consider the measure space (R𝑛,𝔅(R𝑛), 𝜇𝐿), where 𝔅(R𝑛) is the Borel
𝜎-algebra and 𝜇𝐿 is the Lebesgue measure. Let us consider also an abstract domain 𝐴 ∈ A(𝔅(R𝑛)).
Then 𝛿

𝜇𝐿

𝐴
is a quasi-metric 𝐴-compatible. ■

In the following we use the bold symbol 𝑨 to indicate the pair (𝐴, 𝛿𝐴) where 𝐴 ∈ A(𝐶) is an
abstract domain and 𝛿𝐴 is a quasi-metric𝐴-compatible. When we want to use a specific quasi-metric
𝐴-compatible and / or a specific abstract domain 𝐴 we explicitly write the pair, e.g., (Sign, 𝛿𝔴

Sign
).

If 𝛿𝐴 has no superscript, then it is intended as for any quasi-metric 𝐴-compatible, otherwise the
superscript refers to the specific quasi-metric used. For example, 𝛿Sign refers to any quasi-metric Sign-
compatible, whereas 𝛿𝔴

Sign
corresponds to the weighted path-length quasi-metric Sign-compatible

defined in Example 3.5. In addition, when we say that 𝑨 satisfies a certain structural property, e.g.,
ACC, we refer to the abstract domain 𝐴 in the pair 𝑨 = (𝐴, 𝛿𝐴).

4 PARTIAL COMPLETENESS

Completeness is an ideal (and uncommon) situation that captures the precision of the abstract
computation in approximating the dynamic property of interest. In program analysis, completeness
is an highly desirable property that is extremely hard, if not even impossible, to achieve [Giacobazzi
et al. 2000]. For this reason, instead of trying to reach completeness, we need to deal with incom-

pleteness and therefore with imprecision. To this end the weaker notion of local completeness has
been recently introduced by [Bruni et al. 2021] that requires completeness only with respect to

specific inputs. An abstract interpretation 𝑓 ♯ on the abstract domain 𝐴 ∈ A(𝐶) is locally complete

for the function 𝑓 on input 𝑐 ∈ 𝐶 if 𝛼𝐴 (𝑓 (𝑐)) = 𝑓 ♯ (𝛼𝐴 (𝑐)). It is clear that the global notion of
completeness in [Cousot and Cousot 1979; Giacobazzi et al. 2000] implies local completeness, while
the converse does not hold in general. This because local completeness is relative to a specific input
𝑐 ∈ 𝐶 , while completeness is relative to the whole concrete domain 𝐶 .

We propose a further weakening of the property of local completeness that we call partial (local)
completeness and that introduces a limit in the amount of imprecision that is allowed according
to a fixed input. In order to simplify the notation, we introduce the notion of 𝜀-closeness between
abstract elements which specifies the boundaries of allowed imprecision in the abstract domain 𝐴

w.r.t. 𝛿𝐴.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:10 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

𝑓 (𝑐)

⊤𝐶

𝑐

⊥𝐶

𝑓... 𝛼𝐴 (𝑓 (𝑐)) ...

𝛼𝐴 (𝑐)

⊥𝐴

𝑓 ♯ (𝛼𝐴 (𝑐))

⊤𝐴

𝑓 ♯

𝛼𝐴

𝛼𝐴 𝛿𝐴 ≤ 𝜀

Fig. 2. The general idea of 𝜀-partial completeness

Definition 4.1 (𝜺-Closeness w.r.t. 𝜹𝑨). Let 𝑨 ∈ 𝔄(𝐶) be an abstract quasi-metric space and
consider a constant 𝜀 ∈ R≥0. For all 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 ≤𝐴 𝑏, we say that 𝑏 is 𝜀-close to 𝑎 w.r.t. 𝛿𝐴,
denoted 𝑎 ≈𝜀

𝛿𝐴
𝑏, if 𝛿𝐴 (𝑎, 𝑏) ≤ 𝜀. □

The concept of closeness encapsulates both the approximation and the relative error, guided by the
quasi-metric 𝛿𝐴. Therefore, two abstract states that are 𝜀-close w.r.t. 𝛿𝐴 differ just for a maximum
error quantified by 𝜀.

Definition 4.2 (𝜺-Partial completeness). Let 𝑓 ♯ : 𝐴 → 𝐴 be a correct approximation of 𝑓 : 𝐶 → 𝐶

on 𝐴 ∈ A(𝐶). We say that 𝑓 ♯ is an 𝜀-partial complete approximation of 𝑓 on input 𝑐 ∈ 𝐶 if:

𝛼𝐴 (𝑓 (𝑐)) ≈
𝜀
𝛿𝐴

𝑓 ♯ (𝛼𝐴 (𝑐)). □

The general idea of partial completeness is depicted in Fig. 2. Note that by setting 𝜀 = 0 we get local
completeness, whereas by universal quantifying on 𝑐 ∈ 𝐶 we get the standard (global) completeness.
Furthermore, if 𝐴 is complete for 𝑓 then the bca 𝑓 𝛼 is also 𝜀-partial complete for 𝑓 on 𝑨 for every
𝜀 ∈ R≥0, 𝛿𝐴 and 𝑐 ∈ 𝐶 . This means that, similarly to the completeness case, the possibility of

defining an 𝜀-partial complete approximation 𝑓 ♯ of 𝑓 on𝑨 ∈ 𝔄(𝐶) with input 𝑐 , only depends upon

the concrete function 𝑓 , the abstraction 𝐴, the quasi-metric 𝛿𝐴, and the input 𝑐 .

5 PROGRAMS, SEMANTICS, AND ABSTRACT SEMANTICS

5.1 The Syntax

We consider a language of regular commands Prog (as defined, e.g., in [Winskel 1993, Chapter 14,
Exercise 14.4]) whose syntax is defined as:

Prog ∋ r ::= e | r; r | r ⊕ r | r∗

This language is general enough to cover deterministic imperative languages as well as other
programming paradigms that include, e.g., nondeterministic and probabilistic computations, and
equational systems such as Kleene algebras with tests [Kozen 1997]. The expressions e ∈ Exp

represent the basic transfer commands and can be instantiated with different kinds of instructions
such as (nondeterministic or parallel) assignments, (Boolean) guards or assumptions, error gen-
erative primitives, and so on. The term r1; r2 represents sequential composition, the term r1 ⊕ r2
represents a choice command that can behave as either r1 or r2, while the term r∗ is the Kleene
iteration of r where r can be executed 0 or any bounded number of times in a sequence. As an
abbreviation, we write r𝑛 for the sequence r; . . . ; r of 𝑛 sequential composition of r. For our purposes,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:11

AExp ∋ a ::= 𝑣 ∈ Z | 𝑥𝑖 ∈ Var | a + a | a − a | a ∗ a

BExp ∋ b ::= t | f | a = a | a > a | b ∧ b | b ∨ b | ¬b

Exp ∋ e ::= skip | 𝑥𝑖 := a | b?

Fig. 3. Syntax of our deterministic imperative language

JskipK𝑆 ≜ 𝑆

J𝑥𝑖 := aK𝑆 ≜ {𝑠 [𝑥𝑖 ↦→ LaM𝑠] | 𝑠 ∈ 𝑆}

Jb?K𝑆 ≜ {𝑠 ∈ 𝑆 | LbM𝑠 = t}

Jr1; r2K𝑆 ≜ Jr2K(Jr1K𝑆)

Jr1 ⊕ r2K𝑆 ≜ Jr1K𝑆 ∪ Jr2K𝑆

Jr∗K𝑆 ≜ ∪{J𝑟K𝑛𝑆 | 𝑛 ∈ N}

Fig. 4. Collecting denotational semantics of Prog

we will consider standard basic transfer expressions used in deterministic while-programs with
no-op instructions, assignments and Boolean guards, integer expressions and no runtime errors.
The syntax of regular expressions Exp to make programs in Prog is shown in Fig. 3. A standard
deterministic imperative language (similar to, e.g., the one presented in [Winskel 1993]) can be
defined using guarded branching and loop commands as syntactic sugar (used in the examples):

if b then 𝐶1 else 𝐶2 ≜ (b?;𝐶1) ⊕ (¬b?;𝐶2)

while b do 𝐶 ≜ (b?;𝐶)∗;¬b

5.2 The Concrete Semantics

We denote the finite set of variables occurring in some syntactic object 𝑐 by vars(𝑐) ⊆ Var . Var is
assumed to be a denumerable set of variables indexed by positive integers: Var ≜ {𝑥𝑖 | 𝑖 ∈ N>0}.
The index of variables is omitted in programs that have only one variable 𝑥 . A program store is
a partial function 𝑠 ∈ S ≜ Var ↦→ Z, which can be equivalently specified by a tuple of its defined

values ⟨𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛⟩. The set of all stores is S ≜
⋃

𝑛∈N Z
𝑛 . Single store update is written

𝑠 [𝑥𝑖 ↦→ 𝑣], and a set of stores 𝑆 ⊆ S update is defined as: 𝑆 [𝑥𝑖 ↦→ 𝑣] ≜ {𝑠 [𝑥𝑖 ↦→ 𝑣] | 𝑠 ∈ 𝑆}. Given a

store function 𝑠 ∈ S let vars(𝑠) ≜ {𝑥𝑖 ∈ Var | 𝑠 (𝑥𝑖) ↓}, while for 𝑆 ⊆ S let vars(𝑆) ≜
⋃

𝑠∈𝑆 vars(𝑠).
The semantics of arithmetic and Boolean expressions is respectively defined by the functions

L ·M : AExp×S → Z and L ·M : BExp×S → {t, f} whose definitions are straightforward and
therefore omitted. The collecting (or strongest postcondition) semantics of arithmetic and Boolean
expressions is respectively defined by the functions JaK : ℘(S) → ℘(Z) and JbK : ℘(S) → ℘(S)

defined as: JaK𝑆 ≜ {LaM𝑠 ∈ Z | 𝑠 ∈ 𝑆} and JbK𝑆 ≜ {𝑠 ∈ 𝑆 | LbM𝑠 = t} so that JbK𝑆 ⊆ 𝑆 filters the
stores of 𝑆 making b true.

The collecting denotational program semantics is given by the function JrK : ℘(S) → ℘(S) and
it is defined in Fig. 4. This is the standard predicate transformer semantics (also called strongest
postcondition semantics) since JrK𝑆 ∈ ℘(S) turns out to be the strongest store predicate for the
store precondition 𝑆 ∈ ℘(S). The terminology łcollecting semanticsž comes from the fact that
for all r ∈ Prog, JrK : ℘(S) → ℘(S) is an additive function on the complete lattice ⟨℘(S), ⊆⟩, so
that JrK𝑆 = ∪𝑠∈𝑆 JrK{𝑠} holds. Let 𝑃 ∈ Prog be any program composed by regular expressions
defined in Fig. 3. In this case 𝜆𝑠 ∈ S .J𝑃K{𝑠} represents the partial recursive function computed by
𝑃 , where J𝑃K{𝑠} = ∅means non-termination of 𝑃 on input 𝑠 . Conversely, when 𝑃 terminates on the
input store 𝑠 we have J𝑃K{𝑠} = {𝑠 ′} for a suitable store 𝑠 ′. Note that, when 𝑃 does not contain any
assignment to a variable 𝑥𝑖 , if J𝑃K{𝑠} = {𝑠 ′} then 𝑠 ′(𝑥𝑖) = 𝑠 (𝑥𝑖). When J𝑃K is applied to a singleton

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:12 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

JeK𝐴𝑆♯ ≜ 𝛼𝐴 (JeK𝛾𝐴 (𝑆
♯))

Jr1; r2K
𝐴
𝑆♯ ≜ Jr2K

𝐴
(Jr1K

𝐴
𝑆♯)

Jr1 ⊕ r2K
𝐴
𝑆♯ ≜ Jr1K

𝐴
𝑆♯ ⊔𝐴 Jr2K

𝐴
𝑆♯

Jr∗K𝐴𝑆♯ ≜ ⊔𝐴{(J𝑟K
𝐴
)𝑛𝑆♯ | 𝑛 ∈ N}

Fig. 5. Abstract denotational program semantics of Prog

{𝑠} ∈ ℘(S), we use the simpler notation J𝑃K𝑠 in place of J𝑃K{𝑠}. We will often abuse notation
and represent with J𝑃K both the above mentioned collecting semantics (i.e., a total function from
set of stores to set of stores) and the ordinary denotational semantics of 𝑃 (i.e., a partial function
𝜆𝑠.J𝑃K{𝑠} from stores to stores where ∅ corresponds to non-termination).

The collecting semantics is typically used as reference semantics for designing static program
analysis [Cousot and Cousot 1977; Miné 2017]. It is well known that not all elements in ℘(S) are
recursively enumerable (r.e. for short), hence the semantics of a program. Let ℘re (S) be the set of
all r.e. sets of stores while ℘rec (S) be the set of all recursive sets of stores. We have that both ℘

re (S)

and ℘
rec (S) are denumerable and ℘

rec (S) ⊊ ℘
re (S) ⊊ ℘(S). Despite the definition of collecting

semantics applies to any subset of S, in the following we consider as inputs to semantic functions
only sets of stores 𝑆 ∈ ℘(S) such that (i) 𝑆 is r.e. and (ii) 𝑆 predicates over a finite set of variables,
namely |vars(𝑆) | < 𝜔 , as is always the case in abstract interpretation. This still allows any variable
𝑥𝑖 ∈ vars(𝑆) to be assigned infinitely many different values by the stores in a set 𝑆 ∈ ℘

re (S). Since
any input set of stores must have a constructive computable way for building it and programs
always manipulate a finite set of variables, we make the following assumption.

Assumption 2. In the following, unless specified otherwise, we consider as inputs to semantic

functions only sets of stores that are r.e. and that predicate over a finite set of variables. 2

5.3 The Abstract Semantics

An abstraction of stores is specified as an abstract domain 𝐴 ∈ A(℘re (S)). The main source of
imprecision in program analysis is due to the fact that the composition of two bca may not be the
bca of the composition of the corresponding concrete functions. We define the abstract semantics
for an abstract domain 𝐴 ∈ A(℘re (S)) by structural induction on the syntax of Prog starting from
the bca of the basic commands e ∈ Exp and then composing them.
This is formalized by the abstract semantics JrK𝐴 : 𝐴 → 𝐴 shown in Fig. 5, which provides a

correct approximation of the concrete collecting semantics. Recall that in a GI, the abstract join ⊔𝐴

is always the bca of the concrete join ∪. Let us comment further the abstract semantics in Fig. 5:

(i) The abstract semantics of basic transfer expressions e ∈ Exp is defined as the bca on 𝐴. We
assume that the bca of basic transfer commands is computable in Prog. Although in program
analysis this is a recurrent assumption, this choice can be easily weakened by using any
approximation of basic transfer expressions in the abstract semantics, at the price of further
loss of precision. This will result in larger estimated error, without affecting the results later
presented in Section 6.

(ii) Jr1; r2K
𝐴 is compositionally defined and, in general, does not coincide with the bca of Jr1; r2K,

while the composition of complete functions is always complete as recalled in Section 2.2.

2Richer languages manipulating an unbound number of variables, e.g., by recursion, can be considered at the price of

complicating the model and replacing variable finiteness with abstract domains defined as functions from natural numbers

𝑛 ∈ N to Galois connections on a concrete domain with 𝑛 variables (e.g., see [Bruni et al. 2020; Venet 1996]).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:13

(iii) Jr1 ⊕ r2K
𝐴 relies on the abstract lub ⊔𝐴 which is the complete (therefore best correct) approx-

imation of the concrete lub on ℘
re (S). Thus, completeness is preserved: If Jr1K

𝐴 and Jr2K
𝐴 are

complete abstractions of Jr1K and Jr2K, then Jr1 ⊕ r2K
𝐴 is a complete abstraction of Jr1 ⊕ r2K.

A similar reasoning can be applied to Jr∗K𝐴.

(iv) It is easy to check (by structural induction on r) that the abstract semantics in Fig. 5 is
monotonic: ∀r ∈ Prog, if 𝑆

♯
1 ≤𝐴 𝑆

♯
2 then JrK𝐴𝑆♯1 ≤𝐴 JrK𝐴𝑆♯2 , and correct: ∀r ∈ Prog and 𝑆♯ ∈ 𝐴:

JrK𝛾𝐴 (𝑆
♯) ⊆ 𝛾𝐴 (JrK

𝐴
𝑆♯).

In general, the abstract semantics in Fig. 5 does not define a static program analysis since it may
not terminate. Termination can be enforced by using a widening operator ∇𝐴 : 𝐴 ×𝐴 → 𝐴 [Cousot
and Cousot 1977]. From now on, we will assume the following.

Assumption 3. Given an abstract domain𝐴 ∈ A(℘re (S)), we only consider static program analysis

JrK𝐴 : 𝐴 → 𝐴 that terminates in a finite number of steps on all inputs 𝑆♯ ∈ 𝐴.

It is worth noting that the soundness property guaranteed by the abstract interpretation framework
and Assumption 3 imply that for all programs 𝑃 ∈ Prog and set of stores 𝑆 ∈ ℘

re (S): J𝑃K𝑆 ≠ ∅ ⇒

J𝑃K𝐴𝛼𝐴 (𝑆) ≠ ⊥𝐴. This is essential in order for the abstract interpreter to soundly approximate
all possible concrete executions. This condition is trivially satisfied by abstract domains with a
finite number of elements or that are ACC. Otherwise a widening operation extrapolating unstable
bounds is necessary to force termination [Cousot and Cousot 1977].

It is worth remarking that the abstract semantics defined in Fig. 5 is a correct approximation of
the concrete collecting semantics defined in Fig. 4, but, in general, it is not its bca. Moreover, for all
𝐴 ∈ A(℘re (S)), 𝑃 ∈ Prog and 𝑆 ∈ ℘

re (S), the following inequalities hold:

𝛼𝐴 (J𝑃K𝑆) ≤𝐴 𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (𝑆))) ≤𝐴 J𝑃K𝐴𝛼𝐴 (𝑆).

5.4 Recursive Abstract Domains

Static program analysis always relies upon recursive, namely decidable, abstractions. This is because
the analysis of programs requires decidable answers to undecidable questions regarding the dynamic
behavior of programs. The notion of recursive abstract interpretation has been studied in [Cousot
et al. 2018]. In the following, we formalize this notion for a generic GC based abstract interpretation.

Definition 5.1 (Recursive abstract domains of stores). An abstract domain 𝐴 ∈ A(℘re (S)) is
recursive if:

(i) For every store 𝑠 ∈ S, 𝛼𝐴 ({𝑠}) is computable;

(ii) For every 𝑆♯ ∈ 𝐴, the set of stores 𝛾𝐴 (𝑆
♯) is recursive, namely, 𝛾𝐴 (𝑆

♯) ∈ ℘
rec (S);

(iii) The partial order relation ≤𝐴 is decidable. □

Note that (iii) implies that the equivalence relation between abstract elements is decidable. Indeed,
by the antisymmetry property satisfied by all partial order relations, if 𝑎1 ≤𝐴 𝑎2 and 𝑎2 ≤𝐴 𝑎1 then
𝑎1 = 𝑎2. The intuition is that the elements of any recursive abstract domain of stores represent
recursive sets of stores, therefore, they are isomorphic to a suitable subset of ℘rec (S). Besides
recursive abstract domains, we also consider trivial abstractions of stores.

Definition 5.2 (Trivial abstractions of stores). The trivial abstractions in A(℘re (S)) are:

• id ∈ A(℘re (S)) denoting the (least) identical abstraction: ∀𝑆 ∈ ℘
re (S), 𝛼id (𝑆) = 𝑆 = 𝛾id (𝑆)

• ⊤S ∈ A(℘re (S)) denoting the greatest abstraction: ∀𝑆 ∈ ℘
re (S), 𝛼⊤S (𝑆) = S. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:14 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

In the following, we only consider program analyzers as specified by GI-based abstract interpreters
(Assumption 1) over strict (𝛾𝐴 (⊥𝐴) = ∅) and recursive or trivial abstract domains. This assumption
is often left implicit in program analysis, we emphasize it through the following

Assumption 4. We consider abstract domains inA(℘re (S)) that are either strict recursive or trivial.

As a consequence of Assumption 4, each non-trivial abstract domain is assumed to be recursive and
strict. Note that ⊤S is a recursive abstract domain but it is not strict, while id is strict but it is not
recursive because 𝛾id (𝑆) might not be recursive. It is important to note that the GI-based abstract
interpretations and the strictness conditions allow us to consider non-trivial abstract domains of
stores that exactly represent the empty set ∅, i.e., non-termination.

Proposition 5.3. For every non-trivial 𝐴 ∈ A(℘re (S)) we have 𝛾𝐴 (𝛼𝐴 (∅)) = ∅.

The following definition recalls the notion of completeness class of programs, firstly introduced in
[Giacobazzi et al. 2015], as the class of all programs for which a given abstract domain is complete,
and extends this notion to the case of locally complete abstract interpretations.

Definition 5.4 (Completeness classes). Given 𝐴 ∈ A(℘re (S)), its completeness class and local

completeness class C(𝐴) ⊆ Prog and C(𝐴, 𝑆) ⊆ Prog are defined for 𝑆 ∈ ℘
re (S) as follows:

C(𝐴) ≜ {𝑃 ∈ Prog | ∀𝑆 ∈ ℘
re (S). 𝛼𝐴 (J𝑃K𝑆) = J𝑃K𝐴𝛼𝐴 (𝑆)}

C(𝐴, 𝑆) ≜ {𝑃 ∈ Prog | 𝛼𝐴 (J𝑃K𝑆) = J𝑃K𝐴𝛼𝐴 (𝑆)}.
□

Giacobazzi et al. [2015] proved that C(𝐴) is infinite by a straightforward padding argument,
since skip ∈ C(𝐴) for any 𝐴 and sequential composition of complete commands is still complete.
Moreover C(𝐴) is non-extensional because there always exist programs 𝑃 and 𝑄 such that: 𝑃 is
complete for 𝐴, J𝑃K = J𝑄K, and 𝑄 is not complete for 𝐴 (e.g., see [Bruni et al. 2020; Giacobazzi
2008; Laviron and Logozzo 2009] for examples of program transformations designed to alter the
abstract semantics, either by improving precision as in program analysis by hints, or by worsening
precision as in code obfuscation).

6 CLASSES OF PARTIAL COMPLETE PROGRAMS

Standard completeness in program analysis, e.g., see [Cousot and Cousot 1977, 1979; Giacobazzi
et al. 2000], means that no false alarms are returned by analyzing the program with an abstract
interpreter on any possible input state. Local completeness, instead, corresponds to have no false
alarms for some specific input states. An 𝜀-partially complete program analyzer allows some false
alarms to be reported over a considered (set of) input, but their amount is bounded by a constant
𝜀 which is determined according to a quasi-metric which is compatible with the abstract domain
used by the analysis.

6.1 Partial Complete Programs

In this section we introduce the class of programs for which the abstract interpreter returns an
𝜀-partially complete analysis, i.e., the abstract interpreter under the given input, never outputs an
abstract value whose quasi-metric distance from the abstraction of the concrete one exceeds 𝜀.

Definition 6.1 (Decidable quasi-metrics 𝑨-compatible). Let 𝐴 ∈ A(℘re (S)), we say that
𝛿𝐴 : 𝐴 ×𝐴 → Q∞

≥0 ∪ {⊥} is a decidable quasi-metric 𝐴-compatible if it satisfies the three axioms of
Definition 3.1 and the following axiom:

(iv) ∀𝑎1, 𝑎2 ∈ 𝐴, 𝜀 ∈ Q≥0 the predicate 𝛿𝐴 (𝑎1, 𝑎2) ≤ 𝜀 is decidable. □

Decidability of the compatible quasi-metric is important in order to be able to decide the closeness
of the abstract semantics and the abstraction of the concrete one. Note that, by considering only

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:15

recursive or trivial abstract domains in A(℘re (S)) (Assumption 4), any 𝐴 ∈ A(℘re (S)) contains a
finite or countably infinite number of r.e. sets. This means that |𝐴| ≤ 𝜔 = |N| = |Q≥0 |. Therefore, it
is reasonable to consider the range of a decidable quasi-metric 𝐴-compatible function over Q≥0

instead of the non-negative real numbers as in the original definition. It is easy to note that the
weighted path-length quasi-metrics defined in Examples 3.5-3.7 for, respectively, Sign, P ⊓ S and
Int, are all decidable. An abstract domain 𝐴 ∈ A(℘re (S)) endowed with a decidable quasi-metric
𝐴-compatible 𝛿𝐴, forms an abstract quasi-metric space of stores 𝑨 ∈ 𝔄(℘re (S)). 𝛿𝐴 filters the
imprecision injected by the abstract analysis over 𝐴, and it measures only the inaccuracy that
we want to track and hence limit. In the following, otherwise stated, we consider only decidable
quasi-metrics. We can now define when a program is 𝜀-partial complete for an abstract quasi-metric
space of stores and a set of inputs.

Definition 6.2 (𝜺-Partially complete programs). Consider a program 𝑃 ∈ Prog, a constant
bound 𝜀 ∈ Q≥0, a non-empty set of input stores 𝑆 ∈ ℘

re (S) and an abstract quasi-metric space
𝑨 ∈ 𝔄(℘re (S)). 𝑨 is 𝜀-partially complete for 𝑃 in 𝑆 if the following holds:

𝛼𝐴 (J𝑃K𝑆) ≈𝜀
𝛿𝐴

J𝑃K𝐴𝛼𝐴 (𝑆). □

We have all the ingredients to introduce the notion of 𝜀-partial completeness class as a mapping
from abstract quasi-metric spaces of stores 𝔄(℘re (S)), a constant 𝜀 ∈ Q≥0 and a set of inputs, to
the set of all programs for which the abstraction is 𝜀-partially complete. Formally:

C : 𝔄(℘re (S)) × Q≥0 × ℘(℘re (S)) → ℘(Prog).

Definition 6.3 (𝜺-Partial completeness class). The partial completeness class of an abstract quasi-
metric space 𝑨 ∈ 𝔄(℘re (S)), a constant 𝜀 ∈ Q≥0 and a non-empty family of inputs 𝔉 ⊆ ℘

re (S),
denoted C(𝑨, 𝜀,𝔉) ⊆ Prog, is defined as:

C(𝑨, 𝜀,𝔉) ≜ {𝑃 ∈ Prog | ∀𝑆 ∈ 𝔉. 𝛼𝐴 (J𝑃K𝑆) ≈𝜀
𝛿𝐴

J𝑃K𝐴𝛼𝐴 (𝑆)}. □

From now on, we will focus on classes of partial completeness with a single input that will be
denoted with 𝑆 instead of {𝑆}. Because recursive and trivial abstract domains of stores are either
finite or countably infinite, we can define C(𝑨,∞, 𝑆) ≜ ∪𝜀∈Q≥0

C(𝑨, 𝜀, 𝑆). If 𝑃 ∈ C(𝑨, 𝜀, 𝑆) then the
abstraction of the collecting semantics and the abstract semantics, respectively on 𝑆 and 𝛼𝐴 (𝑆),
are 𝜀-close w.r.t. 𝛿𝐴. Roughly, a partial completeness class C(𝑨, 𝜀, 𝑆) is the set of all programs
whose abstract interpretation on abstraction 𝐴 and input 𝑆 can produce false alarms, but the error
introduced is not greater than 𝜀 according to 𝛿𝐴. The following proposition is a straightforward
result from Definition 5.4 of completeness and Definition 6.3 of partial completeness classes.

Proposition 6.4. For every 𝑨 ∈ 𝔄(℘re (S)), the following hold:

(i) C(𝐴) ⊆ C(𝐴, 𝑆) = C(𝑨, 0, 𝑆) ⊆ C(𝑨, 𝜀, 𝑆)

(ii) ∀𝜀, 𝜉 ∈ Q≥0. 𝜀 ≤ 𝜉 ⇒ C(𝑨, 𝜀, 𝑆) ⊆ C(𝑨, 𝜉, 𝑆)

(iii) ∀𝔉,𝔉′ ⊆ ℘
re (S). 𝔉 ⊆ 𝔉′ ⇒ C(𝑨, 𝜀,𝔉′) ⊆ C(𝑨, 𝜀,𝔉)

(iv) ∀𝔉,𝔉′ ⊆ ℘
re (S). C(𝑨, 𝜀,𝔉 ∪𝔉′) = C(𝑨, 𝜀,𝔉) ∩ C(𝑨, 𝜀,𝔉′)

(v) C(𝑨,∞, 𝑆) = Prog

Forcing a zero closeness means requiring no false alarms on input 𝑆 , i.e., local completeness,
while each complete abstraction is also partially complete for every 𝑆 . Moreover, weakening
closeness increases monotonically the set of partially complete programs, while by increasing the
considered set of inputs we might restrict the partial completeness class. In the following, when

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:16 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

we omit the set of inputs from the partial completeness class, we intend as for every 𝑆 , that is
C(𝑨, 𝜀) ≜

⋂
𝑆 ∈℘re (S) C(𝑨, 𝜀, 𝑆).

Example 6.5. Consider the abstract quasi-metric space (Int, 𝛿𝔴
Int
) ∈ 𝔄(℘re (Z)). Let us consider

the class of 0-partial complete programs w.r.t. (Int, 𝛿𝔴
Int
), i.e., C((Int, 𝛿𝔴

Int
), 0, 𝑆) which does not admit

any imprecision on 𝑆 ∈ ℘
re (S), and the class C((Int, 𝛿𝔴

Int
), 1, 𝑆), which admits only one spurious

element on the interval output. We define 𝑃abs ∈ Prog as:

Pabs ≜ if 𝑥 ≥ 0 then skip else 𝑥 := 𝑥 ∗ (−1)

= (𝑥 ≥ 0; skip) ⊕ (𝑥 < 0?; 𝑥 := 𝑥 ∗ (−1))

which, computes the absolute value of integer variables. Consider the input sets 𝑆1 = {0, 2, 5} and
𝑆2 = {−1, 3, 7}. We have the following concrete and abstract evaluations:

𝛼Int (J𝑃absK𝑆1) = 𝛼Int (JskipK𝑆1) = 𝛼Int (𝑆1) = [0, 5]

J𝑃absK
Int
𝛼Int (𝑆1) = J𝑃absK

Int
[0, 5] = JskipKInt [0, 5] = [0, 5]

𝛼Int (J𝑃absK𝑆2) = 𝛼Int (JskipK{3, 7} ∪ J𝑥 := 𝑥 ∗ (−1)K{−1}) = 𝛼Int ({1, 3, 7}) = [1, 7]

J𝑃absK
Int
𝛼Int (𝑆2) = JskipKInt [0, 7] ⊔Int J𝑥 := 𝑥 ∗ (−1)KInt [−1,−1] = [0, 7] ⊔Int [1, 1] = [0, 7]

Then, clearly 𝑃abs ∈ C((Int, 𝛿
𝔴
Int
), 0, 𝑆1), 𝑃abs ∉ C((Int, 𝛿

𝔴
Int
), 0, 𝑆2), while 𝑃abs ∈ C((Int, 𝛿

𝔴
Int
), 1, 𝑆2). ■

Similarly to the completeness case [Giacobazzi et al. 2015], for every 𝜀, the 𝜀-partial completeness
class is infinite and non-extensional. It is infinite because for all 𝜀 ∈ Q≥0 and 𝑆 ∈ ℘

re (S), by
Proposition 6.4 C(𝐴) ⊆ C(𝑨, 𝜀, 𝑆) and C(𝐴) is infinite. Therefore |C(𝑨, 𝜀, 𝑆) | = 𝜔 . It is also non-
extensional because there always exist programs 𝑃 and 𝑄 such that: 𝑃 is partially complete for 𝐴,
J𝑃K = J𝑄K, and 𝑄 is not partially complete for 𝐴, as shown by the following example.

Example 6.6. Consider the abstract domain P ⊓ S, shown in Fig. 1. Let us consider the weighted
path-length quasi-metric P⊓S-compatible 𝛿𝔴

P⊓S
, and the partial completeness classC((P⊓S, 𝛿𝔴

P⊓S
), 2).

Consider the following two programs:

𝑃 ≜ 𝑥 := 0;𝑥 := 𝑥 + 1;𝑥 := 𝑥 − 1

𝑄 ≜ 𝑥 := 2;𝑥 := 𝑥 − 1; if 𝑥 ≥ 1 then 𝑥 := 𝑥 − 1 else skip.

It is easy to note that J𝑃K = J𝑄K = 𝜆𝑆 ∈ ℘
re (Z).{⟨𝑥 ↦→ 0⟩} and𝛼P⊓S (J𝑃K𝑆) = 𝛼P⊓S (J𝑄K𝑆) = ⟨𝑥 ↦→ 0⟩.

It is easy to observe that

J𝑃KP⊓S𝛼P⊓S ({⟨𝑥 ↦→ 𝑣⟩ | 𝑣 ∈ Z}) = ⟨𝑥 ↦→ even⟩

J𝑄KP⊓S𝛼P⊓S ({⟨𝑥 ↦→ 𝑣⟩ | 𝑣 ∈ Z}) = ⟨𝑥 ↦→ Z⟩.

Consequently, 𝑃 ∈ C((P ⊓ S, 𝛿𝔴
P⊓S

), 2) while 𝑄 ∉ C((P ⊓ S, 𝛿𝔴
P⊓S

), 2). Note that, even though
𝑃 is partially complete w.r.t. C((P ⊓ S, 𝛿𝔴

P⊓S
), 2), both 𝑃 and 𝑄 are not complete for P ⊓ S, i.e.,

𝑃,𝑄 ∉ C(P ⊓ S). ■

6.2 Recursive Properties of Partial Complete Programs

It is well known that for trivial abstractions the corresponding completeness class turns out to be
the whole set of programs [Giacobazzi et al. 2000]. Moreover, for all non-trivial abstractions in
A(℘re (S)), its completeness class is strictly contained in Prog [Giacobazzi et al. 2015]. More has
been recently proved along this direction: a completeness class is an index set of partial recursive
function if and only if the abstraction is trivial [Bruni et al. 2020].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:17

In this section, we study the counterpart of these results for the case of partial completeness. We
first consider the simplest case of abstract quasi-metric spaces of stores 𝑨 ∈ 𝔄(℘re (S)) satisfying
the property of having a limited imprecision, i.e., complete lattices 𝐴 such that the quasi-metric
𝛿𝐴 is bounded. These include, for instance, the case of finite height lattices with the weighted
path-length quasi-metricÐcomplete lattices which are both ACC and DCC. We then consider
the more general setting of abstract interpretations over abstract domains where an unlimited
imprecision can always be produced by any terminating program analysis by abstract interpretation,
e.g., employing widening operations to enforce termination [Cousot and Cousot 1977, 1992b].

Definition 6.7 (Abstract quasi-metric spaces with limited imprecision). An abstract quasi-
metric space of stores 𝑨 ∈ 𝔄(℘re (S)) has imprecision limited by 𝜀 ∈ Q≥0 if for each 𝑎 ∈ 𝐴 we have
𝛿𝐴 (⊥𝐴, 𝑎) ≤ 𝜀. □

The following result is immediate and helps us to understand the relation between abstract domains
with limited imprecision and the class of partial completeness properties of programs.

Proposition 6.8. If 𝑨 ∈ 𝔄(℘re (S)) has limited imprecision, then we have

∀𝑆 ∈ ℘
re (S). ∃𝜀 ∈ Q≥0 . C(𝑨, 𝜀, 𝑆) = Prog .

Proof. By definition of abstract domain with limited imprecision, there exists 𝜀 ∈ Q≥0 such
that if 𝑎 ∈ 𝐴 then 𝛿𝐴 (⊥𝐴, 𝑎) ≤ 𝜀. Consider 𝑛 ∈ Q≥0 such that 𝑛 ≥ 𝜀. Then for any 𝑆 we have
Prog = C(𝑨,∞) = ∪𝑚≤𝑛C(𝑨,𝑚) ⊆ C(𝑨, 𝜀, 𝑆). □

The difference with respect to the case of standard completeness class C(𝐴) is that, thanks to the
possibility of admitting an upper margin to imprecision (i.e., possible false alarms), there always
exists a class of partial completeness with respect to a given bound which includes all programs.
This corresponds to allow the largest possible imprecision, viz., amount of incompleteness, making
the condition of being complete (viz., precise) vacuous.

Example 6.9. Consider the abstract domain Sign with 𝛿𝔴
Sign

as Sign-compatible quasi-metric.

(Sign, 𝛿𝔴
Sign

) has clearly limited imprecision. Indeed for all 𝑛 ≥ 3, C((Sign, 𝛿𝔴
Sign

), 𝑛) = Prog. ■

The case of abstract domains with unlimited imprecision is less straightforward and reflects
precisely into the theory of partial completeness. An abstract quasi-metric space of stores 𝑨 ∈

𝔄(℘re (S)) has unlimited imprecisionwhen:∀𝜀 ∈ Q≥0, ∃𝑎 ∈ 𝐴. 𝛿𝐴 (⊥𝐴, 𝑎) > 𝜀. Clearly, the unlimited
imprecision property can only be satisfied by abstract quasi-metric space of stores with a (countably)
infinite number of elements.

Proposition 6.10. Let 𝑨 ∈ 𝔄(℘re (S)) be an abstract quasi-metric space of stores with unlimited

imprecision. Then |𝐴| = 𝜔 .

Next theorem generalizes a result in [Giacobazzi et al. 2015] to the case of classes of partial complete
programs.

Theorem 6.11. Let 𝑨 ∈ 𝔄(℘re (S)) be any abstract quasi-metric space of stores with unlimited

imprecision 𝛿𝐴 and 𝑆 ∈ ℘
re (S). Then:

∃𝜀 ∈ Q≥0. C(𝑨, 𝜀, 𝑆) = Prog ⇔ 𝐴 = id .

Proof. (⇐) is straightforward because when 𝐴 = id then C(𝑨, 0) = C(𝐴) = Prog. Therefore, by
Proposition 6.4, we can conclude C(𝑨, 𝜀, 𝑆) = Prog.
(⇒) By contradiction, we assume that:

(1) 𝐴 ≠ id and, by Assumption 4, 𝐴 is a strict abstract domain, i.e., with abstraction and con-
cretization functions, respectively 𝛼𝐴 and 𝛾𝐴, such that 𝛾𝐴 (𝛼𝐴 (∅)) = ∅;

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:18 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

(2) 𝑨 has unlimited imprecision, i.e., ∀𝜀 ∈ Q≥0 . ∃𝑎 ∈ 𝐴. 𝛿𝐴 (⊥𝐴, 𝑎) > 𝜀;

(3) there exists 𝜉 ≥ 0 such that C(𝑨, 𝜉, 𝑆) = Prog.

By (2) and (3) we have that there exists 𝑎 ∈ 𝐴 such that ⊥𝐴 ≠ 𝑎, otherwise if ⊥𝐴 = 𝑎 then
𝛿𝐴 (⊥𝐴, 𝑎) = 0, while we have 𝛿𝐴 (⊥𝐴, 𝑎) > 𝜉 with 𝜉 ∈ Q≥0. Hence by (1), ∅ ⊂ 𝛾𝐴 (𝑎) (recall that in
any GI 𝛾𝐴 is injective).
We are now in the position of building a program that does not belong to C(𝑨, 𝜉, 𝑆), therefore

leading to an absurd. Consider a non-terminating program 𝑃𝑤 such that for any store 𝑠 ∈ S,
J𝑃𝑤K𝑠 = ∅, while the abstract interpreter is incomplete on it, i.e., for any non-empty 𝑋 ⊆ S:

J𝑃𝑤K𝐴𝛼𝐴 (𝑋) ≠ ⊥𝐴. Define 𝑃𝑎 ∈ Prog as a program such that for any store 𝑠 ∈ S we have that

J𝑃𝑎K𝑠 ∈ 𝛾𝐴 (𝑎) and in particular J𝑃𝑎K
𝐴
(J𝑃𝑤K𝐴𝛼𝐴 (𝑆)) = 𝑎. Turing completeness of Prog ensures that

we can compute any finite store in 𝛾𝐴 (𝑎). Moreover, being 𝛾𝐴 (𝑎) and 𝛾𝐴 (𝛼𝐴 (𝑆)) both recursive sets,

and J·K𝐴 a program, then we can build 𝑃𝑎 in Prog as above.
We prove that if

𝑃 ≜ 𝑃𝑤 ; 𝑃𝑎

then 𝛿𝐴 (𝛼𝐴 (J𝑃K𝑆), J𝑃K𝐴𝛼𝐴 (𝑆)) > 𝜉 hence 𝑃 ∉ C(𝑨, 𝜉, 𝑆). It is clear that

J𝑃K𝑆 = J𝑃𝑎K(J𝑃𝑤K𝑆) = J𝑃𝑎K∅ = ∅

and therefore 𝛼𝐴 (J𝑃K𝑆) = ⊥𝐴. Analogously, with the abstract semantics we have:

J𝑃K𝐴𝛼𝐴 (𝑆) = J𝑃𝑎K
𝐴
(J𝑃𝑤K𝐴𝛼𝐴 (𝑆)) = 𝑎

Therefore: 𝛿𝐴 (𝛼𝐴 (J𝑃K𝑆), J𝑃K𝐴𝛼𝐴 (𝑆)) = 𝛿𝐴 (⊥𝐴, 𝑎) > 𝜉 , hence, 𝑃 ∉ C(𝑨, 𝜉, 𝑆) which contradicts
assumption (3). We can conclude that 𝐴 must be the identical abstraction of stores. □

Informally, if we consider a non-trivial abstract quasi-metric space that has unlimited imprecision
and an input 𝑆 , then independently of how we set a threshold 𝜀 of false alarms acceptance, there
always exists a program 𝑃 for which the abstract analysis over 𝐴 with input 𝑆 , is not 𝜀-partially
complete, namely 𝑃 ∉ C(𝑨, 𝜀, 𝑆). By a straightforward padding argument, any of these programs
can be extended to an infinite set of programs for which the abstraction is 𝜀-partially incomplete.
The class of 𝜀-partial incomplete programs for 𝑨 ∈ 𝔄(℘re (S)) with input 𝑆 , is the complement set

of C(𝑨, 𝜀, 𝑆), formally: C(𝑨, 𝜀, 𝑆) = {𝑃 ∈ Prog | 𝛼𝐴 (J𝑃K𝑆) ̸≈𝜀
𝛿𝐴

J𝑃K𝐴𝛼𝐴 (𝑆)}.

Corollary 6.12. If 𝑨 is a non-trivial abstract quasi-metric space with unlimited imprecision, then

for all 𝜀 ∈ Q≥0, |C(𝑨, 𝜀, 𝑆) | = 𝜔 .

This means that, any non-trivial abstract domain of stores endowed with an unlimited imprecision
𝛿𝐴, has an infinite set of programs for which the abstract interpreter is 𝜀-partially incomplete.
Conversely, if 𝛿𝐴 has limited imprecision, then, trivially, we can always find a certain level of
tolerance that makes the analysis 𝜀-partially complete for all programs.

Example 6.13. Consider the abstract domain of intervals Int ∈ A(℘re (Z)), shown in Example 2.2,
endowed with a quasi-metric Int-compatible 𝛿Int, such that 𝛿Int has unlimited imprecision. Recall
that Int is not ACC. This means that there are infinite strictly ascending chains, such as for instance
[0, 1] ≤Int [0, 2] ≤Int · · · ≤Int [0, 𝑛], Hence, a proper widening operator is required in order
to enforce convergence of the abstract Kleene iterates of the abstract interpreter. The standard
interval widening consists in replacing any unstable upper bound with +∞ and any unstable lower
bound with −∞. Let us define in Fig. 6 the łdelayedž widening ∇𝑖

Int
: Int × Int → Int, where #iter

indicates the current number of iteration in the loop. That is, ∇𝑖
Int

does not immediately abort
unstable computations by pushing to infinity, but it delays its application after 𝑖 iterations. This
is particularly useful when the first few iterates of the loop differ from the following ones, and

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:19

[𝑎, 𝑏] ∇𝑖
Int [𝑐, 𝑑] ≜






𝑎 if 𝑎 ≤ 𝑐

𝑐 if 𝑐 < 𝑎 and #iter ≤ 𝑖

−∞ otherwise
,




𝑏 if 𝑏 ≥ 𝑑

𝑑 if 𝑑 > 𝑏 and #iter ≤ 𝑖

+∞ otherwise



Fig. 6. The widening operator in Example 6.13

it is always a good idea to start extrapolating only after having accumulated a few iterations. In
this way, the widening can make a more educated guess about the loop behavior. After a finite,
fixed number of 𝑖 iterations, we revert to widening so that termination of the abstract interpreter is
preserved. Consider the following program:

𝑃𝑛 ≜ 𝑥 := 𝑛;while 𝑥 > 1 do 𝑥 := 𝑥 − (𝑛 − 1)

where 𝑛 ∈ N≥1 is a constant and the expressions 𝑛 and (𝑛 − 1) are assumed to be resolved before
giving the program as input to the concrete and abstract interpreter (e.g., by running a specializer
on the code like the pre-processor for the C language which replaces all the occurrences of symbols
𝑛 with the corresponding constant number). Clearly, for all input stores the while-loop of 𝑃𝑛
terminates after one iteration if the condition 𝑥 > 1 is satisfied. Indeed, for all 𝑛 ≥ 1 and 𝑆 ∈ ℘

re (Z),
we have J𝑃𝑛K𝑆 = {⟨𝑥 ↦→ 1⟩}, which corresponds to 𝛼Int (J𝑃𝑛K𝑆) = 𝛼Int ({⟨𝑥 ↦→ 1⟩}) = [1, 1]. This
means that all 𝑃𝑛 are extensionally equivalent. Consider now the abstract denotational semantics
for Int abstract domain of stores, where we replace the abstract lub ⊔Int in the loop head with
the widening ∇2

Int which forces the convergence after two iterations. If 𝑛 = 1 we get trivially
⟨𝑥 ↦→ [1, 1]⟩. For 𝑛 ≥ 2, at the first iteration of the while-loop we have:

J𝑥 > 1KInt⟨𝑥 ↦→ [𝑛, 𝑛]⟩ = ⟨𝑥 ↦→ [𝑛, 𝑛]⟩

J𝑥 := 𝑥 − (𝑛 − 1)KInt⟨𝑥 ↦→ [𝑛, 𝑛]⟩ = ⟨𝑥 ↦→ [1, 1]⟩

⟨𝑥 ↦→ [𝑛, 𝑛]⟩ ∇2
Int ⟨𝑥 ↦→ [1, 1]⟩ = ⟨𝑥 ↦→ [1, 𝑛]⟩

while for the second iteration:

J𝑥 > 1KInt⟨𝑥 ↦→ [1, 𝑛]⟩ = ⟨𝑥 ↦→ [2, 𝑛]⟩

J𝑥 := 𝑥 − (𝑛 − 1)KInt⟨𝑥 ↦→ [2, 𝑛]⟩ = ⟨𝑥 ↦→ [(3 − 𝑛), 1]⟩

⟨𝑥 ↦→ [1, 𝑛]⟩ ∇2
Int ⟨𝑥 ↦→ [(3 − 𝑛), 1]⟩ = ⟨𝑥 ↦→ [(3 − 𝑛), 𝑛]⟩.

Finally, at the third iteration we get a fixpoint. The final abstract output of the abstract semantics is
given by the lub between

J𝑥 ≤ 1KInt⟨𝑥 ↦→ [1, 𝑛]⟩ ⊔Int J𝑥 ≤ 1KInt⟨𝑥 ↦→ [(3 − 𝑛), 𝑛]⟩

which is ⟨𝑥 ↦→ [(3 − 𝑛), 1]⟩. Therefore, the abstract semantics of 𝑃𝑛 for all inputs 𝑆 ∈ ℘
re (Z) is

J𝑃1K
Int
𝛼Int (𝑆) = ⟨𝑥 ↦→ [1, 1]⟩ J𝑃𝑛≥2K

Int
𝛼Int (𝑆) = ⟨𝑥 ↦→ [(3 − 𝑛), 1]⟩.

Note that {𝑃𝑛}𝑛∈{1,2} ⊂ C(Int) while {𝑃𝑛}𝑛>2 ∩ C(Int) = ∅. That is, all programs in {𝑃𝑛}𝑛>2 are
incomplete for Int. Moreover, we can arbitrary worsen the result of our static analysis on 𝑃𝑛 by
selecting a larger constant 𝑛. This implies that, since 𝛿Int has unlimited imprecision by assumption,
if 𝑃𝑛 ∈ C((Int, 𝛿Int), 𝜀) for some 𝑛 > 2 and 𝜀 ∈ Q≥0 , then there exists a constant𝑚 ∈ N>0 such that,
for every 𝑆 ∈ ℘

re (Z), the output of the abstract interpreter is

J𝑃𝑛+𝑚KInt𝛼Int (𝑆) = ⟨𝑥 ↦→ [(3 − (𝑛 +𝑚)), 1]⟩

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:20 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

and ⟨𝑥 ↦→ [(3 − 𝑛), 1]⟩ is not 𝜀-close to ⟨𝑥 ↦→ [(3 − (𝑛 +𝑚)), 1]⟩, namely

⟨𝑥 ↦→ [(3 − 𝑛), 1]⟩ ̸≈𝜀
𝛿Int

⟨𝑥 ↦→ [(3 − (𝑛 +𝑚)), 1]⟩.

This implies that 𝑃𝑛+𝑚 ∉ C((Int, 𝛿Int), 𝜀). Observe that, even though both 𝑥 > 1 and 𝑥 ≤ 1 are exactly
representable in Int with the intervals, respectively, [2, +∞] and [−∞, 1], the transfer function for
J𝑥 ≤ 1K : ℘re (Z) → ℘

re (Z) is incomplete with respect to Int. This imprecision can be arbitrarily
widened, without modifying the extensional behavior of the program. This makes possible to foil
any partial complete abstraction with respect to any constant bound 𝜀 ∈ Q≥0. ■

Wenow study the computational limits of the class of partially complete and incomplete programs
with respect to a given abstract quasi-metric space, 𝜀 bound, and set of input stores 𝑆 . We begin
with a definition of 𝜀-triviality for an abstract quasi-metric space of stores.

Definition 6.14 (𝜺-trivial Abstract quasi-metric spaces). An abstract quasi-metric space of
stores 𝑨 ∈ 𝔄(℘re (S)) is 𝜀-trivial for some 𝜀 ∈ Q≥0 if C(𝑨, 𝜀, 𝑆) = Prog. □

Of course 𝜀-trivial abstract domains induce recursive classes of partial complete programs: If 𝑨 is
𝜀-trivial, then both C(𝑨, 𝜀, 𝑆) = Prog and C(𝑨, 𝜀, 𝑆) = ∅ are recursive sets.
In the following, we show some simple examples of 𝜀-trivial abstract domains.

Example 6.15. (id, 𝛿𝔴
id
) and (⊤S, 𝛿𝔴

⊤S
) are both 𝑛-trivial for all 𝑛 ∈ Q≥0. The (Sign, 𝛿

𝔴
Sign

) abstract
quasi-metric space is 𝑛-trivial for 𝑛 ≥ 3, while (P ⊓ S, 𝛿𝔴

P⊓S
) is 𝑛-trivial for 𝑛 ≥ 4. ■

The following theorem shows that the class of programs C(𝑨, 𝜀, 𝑆) turns out to be r.e. whenever
the abstract domain of stores 𝐴 satisfies the ACC property.

Theorem 6.16. If 𝑨 ∈ 𝔄(℘re (S)) is ACC, then for every 𝑆 ∈ ℘
re (S) and 𝜀 ∈ Q≥0, C(𝑨, 𝜀, 𝑆) is r.e..

Proof. Clearly, if 𝐴 = ⊤S then C(𝑨, 𝜀, 𝑆) = Prog and therefore r.e. (recursive in this case).
Suppose 𝐴 ≠ ⊤S and ACC. We show the sketch of a possible algorithm that terminates if and only
if 𝑃 ∈ C(𝑨, 𝜀, 𝑆):

(1) run the abstract interpreter J𝑃K𝐴 with input the recursive set of stores 𝛼𝐴 (𝑆). Suppose that

J𝑃K𝐴𝛼𝐴 (𝑆) = 𝑎;

(2) if 𝑎 = ⊥𝐴, then the algorithm terminates (i.e., 𝑃 is locally complete by the soundness property
of abstract interpretation);

(3) otherwise (𝑎 ≠ ⊥𝐴), let us consider an enumeration {𝑠𝑖 }𝑖∈N of all 𝑠 ∈ 𝑆 (recall that 𝑆 is r.e. by
Assumption 2);

(4) set 𝑏 ≜ ⊥𝐴. Run a dovetail algorithm constructing 𝑏 ≜
⊔

𝑖∈N{𝛼𝐴 (J𝑃K𝑠𝑖)}. The dovetail algo-

rithm performs the first step of J𝑃K𝑠0 on the first store 𝑠0 ∈ 𝑆 ; next, it performs the first step
on the second store 𝑠1 and the second step on the first store 𝑠0; next, it performs the first step
of the third store 𝑠2, the second step of the second store 𝑠1, and the third step on the first store
𝑠0; and so on. When the program J𝑃K𝑠𝑖 terminates (i.e., J𝑃K𝑠𝑖 ≠ ∅) on some 𝑠𝑖 ∈ 𝑆 , then (since
𝛼𝐴 is total recursive) the element 𝛼𝐴 (J𝑃K𝑠𝑖) is added to 𝑏, namely: 𝑏 = 𝑏 ⊔𝐴 𝛼𝐴 (J𝑃K𝑠𝑖);

(5) if, at some point of the iterates, there exists 𝑠𝑖 ∈ 𝑆 such that J𝑃K𝑠𝑖 ≠ ∅, 𝑏 = 𝑏 ⊔𝐴 𝛼𝐴 (J𝑃K𝑠𝑖) and
𝛿𝐴 (𝑏, 𝑎) ≤ 𝜀, because 𝛿𝐴 (𝑏, 𝑎) ≤ 𝜀 is a decidable predicate by Definition 3.1 of quasi-metric
𝐴-compatible, then the algorithm terminates.

If 𝑃 ∈ C(𝑨, 𝜀, 𝑆) then the convergence of the above algorithms solving the recursive equation
𝑏 = 𝑏 ⊔𝐴 𝛼𝐴 (J𝑃K𝑠𝑖) is guaranteed by the ACC property assumption of 𝑨. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:21

The general algorithm proposed in the proof of Theorem 6.16, allows us to systematically prove the
𝜀-partial completeness of any program 𝑃 ∈ Prog on any input 𝑆 ∈ ℘

re (S) w.r.t. any ACC abstract
quasi-metric space 𝑨, while it does not give an answer for programs 𝑃 ∉ C(𝑨, 𝜀, 𝑆).

Example 6.17. Consider the Sign abstract domain endowed with 𝛿𝔴
Sign

and the following program:

𝑃 ≜ if 𝑥 ≥ 1 then 𝑥 := 𝑥 − 1 else skip

We want to check whether 𝑃 is in C((Sign, 𝛿𝔴
Sign

), 1,Z≥0), i.e., the class of programs whose con-
crete and abstract evaluations on the positive integers are 1-close w.r.t. 𝛿𝔴

Sign
, that is, the abstract

interpreter must respect the condition: 𝛼Sign (J𝑃KZ≥0) ⋖Sign J𝑃KSign𝛼Sign (Z≥0). Following the algo-
rithm sketched above we get: J𝑃KSign𝛼Sign (Z≥0) = Z. By constructing the set 𝑏 = 𝑏 ⊔Sign 𝛼Sign (J𝑃K𝑠𝑖)
where 𝑠𝑖 ∈ Z≥0 is an enumeration of Z≥0, we get:

𝑏 = ∅

𝑏 = ∅ ⊔Sign 𝛼Sign (J𝑃K{0}) = 0 ̸≈1
𝛿𝔴
Sign
Z

𝑏 = 0 ⊔Sign 𝛼Sign (J𝑃K{1}) = 0 ⊔Sign 0 = 0 ̸≈1
𝛿𝔴
Sign
Z

𝑏 = 0 ⊔Sign 𝛼Sign (J𝑃K{2}) = 0 ⊔Sign + = + ≈1
𝛿𝔴
Sign
Z

at this point the algorithm terminates, hence we can conclude that 𝑃 ∈ C((Sign, 𝛿𝔴
Sign

),Z≥0, 1).
Note that, for checking whether 𝑃 ∈ C((Sign, 𝛿𝔴

Sign
),Z≥0, 0) the algorithm keeps running the check

𝑏 = + ⊔Sign 𝛼Sign (J𝑃K{𝑛}) = + ⊔Sign + = + and + ̸≈0
𝛿𝔴
Sign

Z for all 𝑛 ∈ Z≥0. This because we have

𝑃 ∉ C(Sign) and hence 𝑃 ∉ C((Sign, 𝛿𝔴
Sign

),Z≥0, 0). ■

We can trivially extend the use of the algorithm proposed in Theorem 6.16 to the local completeness
class of programs which are complete with respect to ACC abstract domains of stores and a set of
input stores.

Corollary 6.18. For every 𝐴 ∈ A(℘re (S)) and 𝑆 ∈ ℘
re (S), if 𝐴 is ACC then C(𝐴, 𝑆) is r.e..

The following theorem proves that both C(𝑨, 𝜀, 𝑆) and C(𝑨, 𝜀, 𝑆) are non-r.e. sets when 𝑨 is not
𝜀-trivial and not ACC.

Theorem 6.19. If 𝑨 ∈ 𝔄(℘re (S)) is not 𝜀-trivial, then C(𝑨, 𝜀, 𝑆) is non-r.e.. Moreover, if 𝑨 is also

not ACC, then C(𝑨, 𝜀, 𝑆) is non-r.e..

Proof. The proof is made by showing that the first order predicate defining the class of 𝜀-
partially complete (resp. incomplete) programs (which can be seen as a subset of natural numbers
since each program in Prog can be mapped through the Gödel numbering 𝔤 : Prog → N to a
natural number) is classified in the arithmetical hierarchy as Π2 (resp. Σ2). Let 𝜑𝑃 : S ↦→ S be
the partial recursive function associated to program 𝑃 ∈ Prog (the concrete interpreter) and,
without loss of generality, 𝜑𝐴 : Prog ×𝐴 → 𝐴 be the total recursive function representing the
abstract interpreter. We define the predicate 𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛), with 𝑠 ∈ S and 𝑛 ∈ N, as follows:
𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛) ⇔ 𝜑𝑃 (𝑠) ↓ in 𝑛 steps ∧ 𝛿𝐴 (𝛼𝐴 (𝜑𝑃 (𝑠)), 𝜑𝐴 (𝑃, 𝛼𝐴 (𝑠))) ≤ 𝜀. Because 𝛿𝐴 (𝑎, 𝑏) ≤ 𝜀 is
decidable by definition of 𝛿𝐴, the predicate defining 𝑅 is recursive, i.e., 𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛) ∈ Σ0 = Π0.
We can rewrite the decidability of the 𝜀-partial completeness and incompleteness classes as follows:

𝑃 ∈ C(𝑨, 𝜀, 𝑆) ⇔ ∀𝑠 ∈ 𝑆. ∃𝑛 ∈ N. 𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛)

𝑃 ∈ C(𝑨, 𝜀, 𝑆) ⇔ ∃𝑠 ∈ 𝑆. ∀𝑛 ∈ N. ¬𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:22 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

Table 1. Recursive properties of completeness, local completeness and partial completeness classes of programs

and their respective complement classes

Class
Recursive
Property

Proof Conditions

Completeness
C(𝐴) non-r.e. [Giacobazzi et al. 2015] 𝐴 non-trivial

C(𝐴) non-r.e. [Giacobazzi et al. 2015] 𝐴 non-trivial

Local
Completeness

C(𝐴, 𝑆) r.e. Corollary 6.18 𝐴 ACC

C(𝐴, 𝑆) non-r.e. Corollary 6.20 𝐴 non-trivial

Partial
Completeness

C(𝑨, 𝜀, 𝑆) r.e. Theorem 6.16 𝑨 ACC

C(𝑨, 𝜀, 𝑆) non-r.e. Theorem 6.19
𝑨 non-𝜀-trivial,

non-ACC

C(𝑨, 𝜀, 𝑆) non-r.e. Theorem 6.19 𝑨 non-𝜀-trivial

By observing the bounded quantifiers before 𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛) and ¬𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛), we can conclude
that 𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛) ∈ Π2 and 𝑅(𝑨, 𝜀, 𝑃, 𝑠, 𝑛) ∈ Σ2. This proves that C(𝑨, 𝜀, 𝑆) and C(𝑨, 𝜀, 𝑆) are both
non-r.e. sets. □

Corollary 6.20. If 𝐴 ∉ {id,⊤S} then the local incompleteness class C(𝐴, 𝑆) is non-r.e., moreover if

𝐴 is also not ACC then the local completeness class C(𝐴, 𝑆) is non-r.e..

Let us notice that the proofs of Theorems 6.16 and 6.19 provide a further insight into the structure
of C(𝑨, 𝜀, 𝑆) and its complement class C(𝑨, 𝜀, 𝑆). These theorems prove that, given any non-ACC
abstract quasi-metric space of stores 𝑨, whenever we limit the expected imprecision of our analysis
to a bound 𝜀 of possible false alarms w.r.t. an input 𝑆 , we cannot build a procedure that enumerates
all programs satisfying that bound or that do not respect that bound, unless the abstract domain
is 𝜀-trivial. Therefore, automating the proof that an abstract domain is 𝜀-partially complete or
𝜀-partially incomplete for a given program and a given set of input storesÐ i.e., deciding whether
a static program analysis can produce or cannot produce some bounded set of false alarmsÐis
in general impossible. The 𝜀-partial completeness and incompleteness class of an abstraction are
therefore a non-trivial property of programs for which no recursively enumerable procedure may
exist which is able to enumerate all of their elements. Table 1 summarizes the state of the art
concerning the recursive properties of these classes.

7 ESTIMATING THE IMPRECISION OF AN ABSTRACT INTERPRETER

The above results of non-recursive enumerability for non-ACC abstract domains of the class of
partial complete programs prevent us from developing any complete procedure to establish whether
an abstraction is 𝜀-partial complete or incomplete for a given program and input stores. In this
section we introduce a sound proof system that is able to overstimate a bound of imprecision
generated by the abstract interpreter when analyzing 𝑃 with input 𝑆 over 𝑨.
Given an abstract quasi-metric space of stores 𝑨 ∈ 𝔄(℘re (S)), a program 𝑃 ∈ Prog, a pre-

condition and a post condition predicates over S, our goal is to derive a triple [Pre] 𝑃 [Post, 𝜀]
such that the abstraction of the post-condition Post is 𝜀-close to the abstraction of the concrete

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:23

⊢𝑨 [Pre] skip [Pre, 0]
[skip]

𝑏? ∈ C(𝑨, 𝜀, Pre)

⊢𝑨 [Pre] 𝑏? [J𝑏?K𝛾𝐴 (𝛼𝐴 (Pre)), 𝜀]
[bool]

𝑥 := 𝑎 ∈ C(𝑨, 𝜀, Pre)

⊢𝑨 [Pre] 𝑥 := 𝑎 [J𝑥 := 𝑎K𝛾𝐴 (𝛼𝐴 (Pre)), 𝜀]
[assign]

⊢𝑨 [Pre] 𝑃1 [Mid, 𝛽] ⊢𝑨 [Mid] 𝑃2 [Post, 𝜀] ⊢𝑨 [J𝑃1KPre] 𝑃2 [J𝑃2KMid, 𝜂]

⊢𝑨 [Pre] 𝑃1; 𝑃2 [Post, 𝜀 + 𝜂]
[seq]

⊢𝑨 [Pre] 𝑃 [Post, 𝜀] 𝛼𝐴 (Post) ≈
𝛽

𝛿𝐴
𝛼𝐴 (Post

′)

⊢𝑨 [Pre] 𝑃 [Post′, 𝜀 + 𝛽]
[weaken]

⊢𝑨 [𝛾𝐴 (𝛼𝐴 (Pre))] 𝑃 [Pre, 𝜀]

⊢𝑨 [𝛾𝐴 (𝛼𝐴 (Pre))] 𝑃
∗ [Pre, 𝜀]

[star]

⊢𝑨 [Pre] 𝑃1 [Post1, 𝛽] ⊢𝑨 [Pre] 𝑃2 [Post2, 𝜀] ⊕-Bound(𝑨, b)

⊢𝑨 [Pre] 𝑃1 ⊕ 𝑃2 [Post1 ∨ Post2, b(𝛽, 𝜀)]
[join]

Fig. 7. The proof system ⊢𝑨

evaluation of 𝑃 with input the pre-condition Pre, namely:

[Pre] 𝑃 [Post, 𝜀] ⇔ 𝛼𝐴 (J𝑃KPre) ≈𝜀
𝛿𝐴

𝛼𝐴 (Post).

This generalizes the well-known Hoare triples for partial correctness, by keeping track in 𝜀 of the
imprecision measured by 𝛿𝐴 and accumulated by the abstract interpreter defined on the abstract
domain 𝐴. Of course we allow an undefined amount of imprecision, here denoted by the symbol∞,
that is, 𝜀 ∈ Q∞

≥0. To simplify notation, we represent the predicates Pre, Post as sets of stores instead
of first order predicate. For example, the set {−2, 5} ∈ ℘

re (Z) is used to represent a more verbose
expression such as 𝑥 = −2 ∨ 𝑥 = 5. The proof system is shown in Fig. 7.

Let us give an intuition for each rule. The triples derived by [bool] and [assign] rules represent
the basic inductive assumptions on the bound of the imprecision. Note that the post-condition
of both rules corresponds to the bca of the concrete semantics. Rule [weaken] allows us to
derive a weaker post-condition by choosing another output Post′ that over approximates Post
and is more inaccurate of 𝛽 . In this case, by the triangle inequality axiom of 𝛿𝐴, we get as new
bound 𝜀 + 𝛽 . The rule [seq] for sequential composition requires the additional hypothesis that
⊢𝑨 [J𝑃1KPre] 𝑃2 [J𝑃2KMid, 𝜂] which states that the abstract output of the concrete semantics of 𝑃2
with input Mid is 𝜂-close respect to having as input J𝑃1KPre. This fixes the maximal output distance
of 𝑃2 with input Mid. Here 𝜂 could be obtained as a function depending on the 𝛽-distance of the
inputs starting from J𝑃1KPre. Note that, in this case, the worst case imprecision bound consists
in the sum of the bound 𝜂 generated by the computation 𝛼𝐴 (J𝑃2KMid) and the distance with the
abstraction of the post-condition chosen. Rule [star] captures an abstract invariant with an amount
of maximal error quantified in 𝜀. Because the join operator is always complete and the elements
building 𝑃∗ are all along a chain, the ∗ operator does not lose further precision w.r.t. what P already
does. This rule does not consider the use of a widening operator and therefore it assumes that
the abstract interpreter terminates (e.g., when 𝑨 is ACC). The case of widening-based abstract
interpreters always ensuring termination is later discussed in Section 9. The last rule [join] involves
the join operator. Even though the abstract join operator preserves completeness, the case where
one of the two (or both) operands are incomplete, is not straightforward. The problem here stems
in the fact that the resulting imprecision bound could not be determined by knowing only the
imprecision on 𝑃1 and 𝑃2. This is because the quasi-metric distance between the concrete execution
of 𝑃1 ⊕ 𝑃2 and the join of the two post-conditions, relies on the underlying structure of the abstract
quasi-metric space considered. For this reason, the premise of rule [join] asks for the validity of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:24 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

𝑤𝑦

𝑥 ⊔𝐴 𝑧

𝑧𝑥

𝑦 ⊔𝐴 𝑤

≤
𝜀

≤
𝛽

≤ b(𝛽, 𝜀)

Fig. 8. The ⊕-Bound condition

the predicate ⊕-Bound which induces a topological property on the abstract domain as depicted in
Fig. 8, and defined as follows:

Definition 7.1 (⊕-Bound). Let 𝑨 ∈ 𝔄(℘re (S)) and b : Q∞
≥0 × Q∞

≥0 → Q∞
≥0. The predicate

⊕-Bound(𝑨, b) is true if the function b satisfies the following condition for all 𝑥,𝑦, 𝑧,𝑤 ∈ 𝐴 and
𝛽, 𝜀 ∈ Q∞

≥0: 𝛿𝐴 (𝑥,𝑦) ≤ 𝛽 ∧ 𝛿𝐴 (𝑧,𝑤) ≤ 𝜀 ⇒ 𝛿𝐴 (𝑥 ⊔𝐴 𝑧,𝑦 ⊔𝐴 𝑤) ≤ b(𝛽, 𝜀). □

Note that Definition 7.1 ranges over any 𝑥, 𝑧 ∈ 𝐴, this means that it also holds when 𝑥 ≤𝐴 𝑧 and
viceversa (the same applies for 𝑦 and 𝑤). Fig. 8 is an example where, respectively, 𝑥, 𝑧 and 𝑦,𝑤
are incomparable. Recall that 𝛿𝐴 (𝑥,𝑦) ≤ 𝛽 implies 𝑥 ≤𝐴 𝑦. The predicate ⊕-Bound captures a
specific structural property of the quasi-metric space𝑨: It says that for every four abstract elements
that are related as in Fig. 8, the corresponding join has a limited error bounded by the function b
which depends on the two bound 𝛽 and 𝜀. This topological property depends on both the complete
lattice forming 𝐴 and on the quasi-metric 𝐴-compatible considered. Clearly, the constant function
b(𝛽, 𝜀) ≜∞ satisfies the predicate ⊕-Bound for every𝑨 ∈ 𝔄(℘re (S)), though giving no information
on a possible bound. As an example of application, in the following proposition we prove that the
predicate ⊕-Bound is valid for the interval abstract domain (Int, 𝛿𝔴

Int
) defined in Example 3.7, where

b corresponds to the sum function.

Proposition 7.2. Let b(𝛽, 𝜀) ≜ 𝛽 + 𝜀 for all 𝛽, 𝜀 ∈ Q≥0. Then ⊕-Bound((Int, 𝛿𝔴
Int
), b) holds.

Proof. Clearly, if either 𝛽 or 𝜀 (or both) are∞, then b(𝛽, 𝜀) = ∞ and the predicate is trivially true.
Let us consider four finite intervals [𝑎, 𝑏], [𝑐, 𝑑], [𝑥,𝑦], [𝑧,𝑤] ∈ Int such that 𝛿𝔴

Int
([𝑎, 𝑏], [𝑐, 𝑑]) =

𝛽 ≠ ∞ and 𝛿𝔴
Int
([𝑥,𝑦], [𝑧,𝑤]) = 𝜀 ≠ ∞. Let us consider the case where 𝑏 < 𝑥 and 𝑑 < 𝑧, that is,

the intervals [𝑎, 𝑏] and [𝑥,𝑦] do not share elements (same for [𝑐, 𝑑] and [𝑧,𝑤]). Let | [𝑎, 𝑏] | be the
standard cardinality function. By the definition of 𝛿𝔴

Int
and the stated assumptions, we know that:

| [𝑐, 𝑑] | = | [𝑎, 𝑏] | + 𝛽

| [𝑧,𝑤] | = | [𝑥,𝑦] | + 𝜀.

That is, the intuition of 𝛿𝔴
Int

is that if 𝛿𝔴
Int
([𝑎, 𝑏], [𝑐, 𝑑]) = 𝛽 then the interval [𝑐, 𝑑] has 𝛽 elements

more than [𝑎, 𝑏]. This implies that we can count the elements of the union between two intervals
as follows:

| [𝑎, 𝑏] ⊔Int [𝑥,𝑦] | = | [𝑎, 𝑏] | + | [𝑥,𝑦] | + | [𝑏 + 1, 𝑥 − 1] |

| [𝑐, 𝑑] ⊔Int [𝑧,𝑤] | = | [𝑐, 𝑑] | + | [𝑧,𝑤] | + | [𝑑 + 1, 𝑧 − 1] |.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:25

Note that | [𝑑 + 1, 𝑧 − 1] | ≤ | [𝑏 + 1, 𝑥 − 1] | because [𝑑 + 1, 𝑧 − 1] is defined by the intervals [𝑐, 𝑑]
and [𝑧,𝑤] which are strictly larger than [𝑎, 𝑏] and [𝑥,𝑦], respectively. Therefore, we get:

𝛿𝔴Int ([𝑎, 𝑏] ⊔Int [𝑥,𝑦], [𝑐, 𝑑] ⊔Int [𝑧,𝑤]) = | [𝑐, 𝑑] ⊔Int [𝑧,𝑤] | − | [𝑎, 𝑏] ⊔Int [𝑥,𝑦] |

= 𝛽 + 𝜀 + |[𝑑 + 1, 𝑧 − 1] | − | [𝑏 + 1, 𝑥 − 1] |

≤ 𝛽 + 𝜀.

The other cases follows immediately. □

The following proposition gives a straightforward bound function for the abstract join over abstract
domains with finite height where the weighted path-length quasi-metric is used.

Proposition 7.3. Let (𝐴, 𝛿𝔴
𝐴
) ∈ 𝔄(℘re (S)) be any ACC and DCC abstract quasi-metric domain

endowed with the weighted path-length quasi-metric. If we define

b(𝛽, 𝜀) ≜

{
0 if 𝛽 = 𝜀 = 0,

max
{∑

𝑒∈c𝔴(𝑒)
�� c ∈ ℭ

⊤𝐴

⊥𝐴

}
otherwise.

then ⊕-Bound((𝐴, 𝛿𝔴
𝐴
), b) holds.

The following theorem proves the soundness of our proof system.

Theorem 7.4. ⊢𝑨 [Pre] 𝑃 [Post, 𝜀] ⇒ 𝛼𝐴 (J𝑃KPre) ≈𝜀
𝛿𝐴

𝛼𝐴 (Post).

Proof. Rule [exp] follows immediately since 0-closeness implies equality.
[weaken]: 𝛼𝐴 (J𝑃KPre) ≈𝜀

𝛿𝐴
𝛼𝐴 (Post) ≈

𝛽

𝛿𝐴
𝛼𝐴 (Post

′) and, by the weak triangle inequality of 𝛿𝐴, we
conclude that 𝛼𝐴 (J𝑃KPre) ≈

𝜀+𝛽

𝛿𝐴
𝛼𝐴 (Post

′).

[seq]: By assuming 𝛼𝐴 (J𝑃2KJ𝑃1KPre) ≈
𝜂

𝛿𝐴
𝛼𝐴 (J𝑃2KMid) ≈𝜀

𝛿𝐴
𝛼𝐴 (Post) and by the weak triangle

inequality we get 𝛼𝐴 (J𝑃2KJ𝑃1KPre) ≈
𝜀+𝜂

𝛿𝐴
𝛼𝐴 (Post).

[star]: We assume 𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (Pre))) ≈
𝜀
𝛿𝐴

𝛼𝐴 (Pre). We need to prove that the following distance
holds: 𝛼𝐴 (J𝑃

∗K𝛾𝐴 (𝛼𝐴 (Pre))) ≈
𝜀
𝛿𝐴

𝛼𝐴 (Pre). By definition

𝛼𝐴 (J𝑃
∗K𝛾𝐴 (𝛼𝐴 (Pre))) = 𝛼𝐴 (

⋃

𝑛

{J𝑃K𝑛𝛾𝐴 (𝛼𝐴 (Pre))})

=
⊔

𝑛

{𝛼𝐴 (J𝑃K𝑛𝛾𝐴 (𝛼𝐴 (Pre)))}.

By induction, if 𝑛 = 0 we get 𝛼𝐴 (Pre) ≈
𝜀
𝛿𝐴

𝛼𝐴 (Pre) and if 𝑛 = 1 𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (Pre))) ≈
𝜀
𝛿𝐴

𝛼𝐴 (Pre)
which holds by the premise of this rule. Assume the inductive hypothesis for 𝑛. Then for the 𝑛 + 1

step we get:

𝛼𝐴 (J𝑃K𝑛+1𝛾𝐴 (𝛼𝐴 (Pre))) = 𝛼𝐴 (J𝑃KJ𝑃K𝑛𝛾𝐴 (𝛼𝐴 (Pre)))
≤𝐴 𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (J𝑃K𝑛𝛾𝐴 (𝛼𝐴 (Pre))))) ≈

𝜀
𝛿𝐴

𝛼𝐴 (Pre) .

Therefore, we can conclude 𝛼𝐴 (J𝑃
∗K𝛾𝐴 (𝛼𝐴 (Pre))) ≈

𝜀
𝛿𝐴

𝛼𝐴 (Pre).

[join]: We know that 𝛼𝐴 (J𝑃1KPre) ≈
𝛽

𝛿𝐴
𝛼𝐴 (Post1) and 𝛼𝐴 (J𝑃2KPre) ≈

𝜀
𝛿𝐴

𝛼𝐴 (Post2). Then, by assum-
ing the validity of ⊕-Bound, we get:

𝛼𝐴 (J𝑃1 ⊕ 𝑃2KPre) = 𝛼𝐴 (J𝑃1KPre ∨ J𝑃2KPre)
= 𝛼𝐴 (J𝑃1KPre) ∨𝐴 𝛼𝐴 (J𝑃2KPre)
≈
b(𝛽,𝜀)

𝛿𝐴
𝛼𝐴 (Post1) ∨𝐴 𝛼𝐴 (Post2) = 𝛼𝐴 (Post1 ∨ Post2).

□

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:26 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

𝑥 ≥ 0? ∈ C((Int, 𝛿𝔴
Int
), 3, {−1, 3, 7}))

⊢(Int,𝛿𝔴
Int
) [{−1, 3, 7}] 𝑥 ≥ 0? [{0, .., 7}, 3]

[bool]
⊢(Int,𝛿𝔴

Int
) [{0, .., 7}] skip [{0, ..7}, 0]

[skip]
⊢(Int,𝛿𝔴

Int
) [{3, 7}] skip [{3, 7}, 0]

[skip]
𝛼Int ({3, 7}) ≈

3
𝛿𝔴
Int

𝛼Int ({0, ..7})

⊢(Int,𝛿𝔴
Int
) [{3, 7}] skip [{0, .., 7}, 3]

[weaken]

(∗)
[seq]

𝑥 < 0? ∈ C((Int, 𝛿𝔴
Int
), 0, {−1, 3, 7})

⊢(Int,𝛿𝔴
Int
) [{−1, 3, 7}] 𝑥 < 0? [{−1}, 0]

[bool]
𝑥 := 𝑥 ∗ −1 ∈ C((Int, 𝛿𝔴

Int
), 0, {−1})

⊢(Int,𝛿𝔴
Int
) [{−1}] 𝑥 := 𝑥 ∗ −1 [{1}, 0]

[assign]

(#)
[seq]

(∗)

⊢(Int,𝛿𝔴
Int
) [{−1, 3, 7}] 𝑥 ≥ 0; skip [{0, .., 7}, 3]

[seq]
(#)

⊢(Int,𝛿𝔴
Int
) [{−1, 3, 7}] 𝑥 < 0?;𝑥 := 𝑥 ∗ −1 [{1}, 0]

[seq]

⊢(Int,𝛿𝔴
Int
) [{−1, 3, 7}] 𝑃 [{0, .., 7}, 3]

[join]

Fig. 9. Derivation of Example 7.6

The fundamental consequence of Theorem 7.4 is reported in the following corollary. Here the
class of programs Cbca (𝑨, 𝛽, 𝑆) is defined as follows:

Cbca (𝑨, 𝛽, 𝑆) ≜ {𝑃 ∈ Prog | 𝛼𝐴 (J𝑃K𝑆) ≈
𝛽

𝛿𝐴
𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (𝑆)))}.

Corollary 7.5. The following implications hold:

(i) ⊢𝑨 [Pre] 𝑃 [J𝑃K𝛾𝐴 (𝛼𝐴 (Pre)), 𝛽] ⇒ 𝑃 ∈ Cbca (𝑨, 𝛽, Pre)

(ii) ⊢𝑨 [Pre] 𝑃 [𝛾𝐴 (J𝑃K𝐴𝛼𝐴 (Pre)), 𝜀] ⇒ 𝑃 ∈ C(𝑨, 𝜀, Pre)

(iii) ⊢𝑨 [Pre] 𝑃 [J𝑃K𝛾𝐴 (𝛼𝐴 (Pre)), 𝛽]∧ ⊢𝑨 [Pre] 𝑃 [𝛾𝐴 (J𝑃K𝐴𝛼𝐴 (Pre)), 𝜀] ⇒ 𝛽 ≤ 𝜀

Intuitively, the class Cbca (𝑨, 𝛽, 𝑆) collects all the programs whose bca on 𝐴 with input 𝑆 , is 𝛽-close
to the abstraction of their corresponding concrete executions.
The triple ⊢𝑨 [Pre] 𝑃 [𝛾𝐴 (J𝑃K𝐴𝛼𝐴 (Pre)), 𝜀] infers the upper bound of imprecision between the
abstraction of the concrete execution of 𝑃 and its abstract semantics with input 𝑆 , that is, we prove
that 𝑨 (i.e., the abstract semantics J·K𝐴 defined in Fig. 5) is 𝜀-partial complete for 𝑃 . Conversely, the

triple ⊢𝑨 [Pre] 𝑃 [J𝑃K𝛾𝐴 (𝛼𝐴 (Pre)), 𝛽] allows us to prove the limit of imprecision of the bca of 𝐴
respect to the abstraction of the concrete semantics on 𝑃 with input 𝑆 . 𝛽 can be considered as the
intrinsic imprecision of the chosen abstract quasi-metric space 𝑨 when analyzing 𝑃 with input 𝑆 ,
from which we cannot define a more precise analysis.

Example 7.6. Let us consider the program 𝑃abs ≜ (𝑥 ≥ 0; skip) ⊕ (𝑥 < 0?; 𝑥 := 𝑥 ∗ (−1)) of

Example 6.5 and the input 𝑆2 = {−1, 3, 7}. We know that J𝑃KInt𝛼Int (𝑆2) = [0, 7] and by deriving in
Fig. 9 the triple ⊢(Int,𝛿𝔴

Int
) [{−1, 3, 7}] 𝑃 [{0, 1, .., 7}, 3] we can conclude that 𝑃 ∈ C((Int, 𝛿𝔴

Int
), 3, 𝑆2).

From Example 6.5 we know that 𝑃 ∈ C((Int, 𝛿𝔴
Int
), 1, 𝑆2), and, although the result is sound since

C((Int, 𝛿𝔴
Int
), 1, 𝑆2) ⊆ C((Int, 𝛿

𝔴
Int
), 3, 𝑆2), this discrepancy is due to the partial completeness hy-

pothesis of the base rule [bool] on 𝑥 ≥ 0? with input 𝑆2 which will be propagated through
the other rules. It is easy to note that the abstract semantics corresponds to the bca over Int,
i.e., J𝑃KInt𝛼Int (𝑆2) = 𝛼Int (J𝑃K𝛾Int (𝛼Int (𝑆2))), therefore, the derivation in Fig. 9 proves also that

𝑃 ∈ Cbca ((Int, 𝛿𝔴
Int
), 3, 𝑆2). ■

The distance between 𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (Pre))) ≤𝐴 J𝑃K𝐴𝛼𝐴 (Pre) can be obtained by modifying the
rules [bool] and [assign] as follows:

⊩𝑨 [Pre] 𝑥 := 𝑎 [J𝑥 := 𝑎K𝛾𝐴 (𝛼𝐴 (Pre)), 0]
[assign]

⊩𝑨 [Pre] 𝑏? [J𝑏?K𝛾𝐴 (𝛼𝐴 (Pre)), 0]
[bool]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:27

𝛼𝐴 (J𝑃KPre) 𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (Pre))) J𝑃K𝐴𝛼𝐴 (Pre)
≈
𝛽

𝛿𝐴

⊢𝑨

≈𝜀
𝛿𝐴

⊢𝑨

≈
𝜂

𝛿𝐴

⊩𝑨

Fig. 10. The distance relation achieved by the two proof systems ⊢𝑨 and ⊩𝑨

The other rules remain untouched. We denote this new proof system with ⊩𝑨. Note that, as we
are interested in measuring the imprecision added by the abstract interpreter w.r.t. the bca, rules
[bool] and [assign] assert that the evaluation of the base rules, i.e., the regular expressions do not
generate imprecision because the abstract semantics considered evaluates 𝑥 := 𝑎 and 𝑏? as their
respective bcas. The soundness proof of ⊩𝑨 follows immediately by ⊢𝑨.

Corollary 7.7. The following implication holds:

⊩𝑨 [𝛾𝐴 (𝛼𝐴 (Pre))] 𝑃 [𝛾𝐴 (J𝑃K𝐴𝛼𝐴 (Pre)), 𝜂] ⇒ 𝛿𝐴 (𝛼𝐴 (J𝑃K𝛾𝐴 (𝛼𝐴 (Pre))), J𝑃K𝐴𝛼𝐴 (Pre)) ≤ 𝜂.

Fig. 10 summarizes the results obtained from Corollaries 7.5 and 7.7.

8 RELATED WORK

Completeness is a well known notion in static program analysis by abstract interpretation and
the classes of complete programs for a given abstraction have been recently studied [Bruni et al.
2020, 2021; Giacobazzi et al. 2015]. In [Giacobazzi et al. 2015] the authors introduce the notion of
completeness class as the set of all programs that are complete with regard to a given abstract
domain, together with a sound stratified deductive system for proving the completeness of program
analysis over an abstract domain. Giacobazzi et al. [2015] provide a sound proof system for proving
completeness of any program respect to an abstract domain of stores. We follow an orthogonal
approach and, rather than proving whether a program 𝑃 is 𝜀-partial complete respect to an abstract
quasi-metric space of stores 𝑨 and a set of stores 𝑆 , we formalize a sound proof system that is
able to overstimate a bound of imprecision generated by the abstract interpreter when analyzing
𝑃 with input 𝑆 over 𝑨. Bruni et al. [Bruni et al. 2020] introduced the concept of completeness
cliques as the set of equivalent programs that are complete with regard to an abstract domain. In
particular, they prove that there exists a total recursive function that transforms any complete
program into a semantically equivalent but incomplete one for a given abstraction. This work
does not distinguish among incompleteness results: An analysis is either complete or incomplete
but no further formalization is available for reasoning about the level of imprecision associated
to an incomplete analysis. The first attempt to weaken the notion of completeness in abstract
interpretation has been recently introduced by Bruni et al. [2021]. Here the authors introduced the
notion of local completeness, that is, completeness among certain program traces. They provided a
logical proof system that combines over and under-approximations of programs behaviors. Our
approach can be considered as a further weakening of local completeness, as our aim is to be able
to measure and reason about the imprecision induced by program analysis.

A wide literature has addressed the problem of measuring the imprecision of abstract interpreta-
tion and static analysis. Among the earliest, Crazzolara Crazzolara [1997] was among the very first
proposing the use of quasi-metric spaces, instead of partial orders, as a definition of distance in
abstract interpretation. In particular [Crazzolara 1997] applies Banach’s contraction principle as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

59:28 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

an alternative for Knaster-Tarsky’s fixpoint theorem. Conversely, our approach considers quasi-
metrics as external measures and we follow the classical framework of abstract interpretation
in [Cousot and Cousot 1977] and [Cousot and Cousot 1979] for the fixpoint approximation in
concrete collecting and abstract semantics. In [Casso et al. 2019] the authors propose distances in
logic programming domains for measuring the precision of analysis, while in [Logozzo 2009] the
authors introduce the notion of pseudo-distance, a weaker form of metric similar to quasi-metric
definition, as an external measure function to quantifying the relative loss of precision induced by
numerical abstract domains. Also Sotin [2010] defines measures in R𝑛 that allow us to quantify the
difference in precision between two abstract values of a numeric domain, by comparing the size of
their concretizations. This is applied to guess the most appropriate domain to analyze a program, by
under-approximating the potentially visited states via random testing and comparing the precision
with which different domains would approximate those states. Di Pierro and Wiklicky [2000] also
propose a notion of probabilistic abstract interpretation, which allows us to measure the precision of
an abstract domain and its operators by using vector spaces instead of partially order sets. However,
all the above mentioned papers do not study the properties of families of programs for which the
precision of the analysis can be bounded and ways to inductively estimate, in a proof system like
approach, an upper bound to the error injected by the abstract interpreter during program analysis.
It is worth remarking that, instead of defining domain-specific measures of the imprecision injected
by program analysis, we define a general framework based on generic quasi-metric spaces and
a weaker notion of completeness, here called partial completeness, that allow us to control the
amount of imprecision that we tolerate in the analysis. All the above mentioned notions of distance
(e.g., those in [Casso et al. 2019; Logozzo 2009; Sotin 2010]) can be plugged in our theory, resulting
in specific classes of partial complete programs and a proof system for estimating an upper bound
to the error accumulated by the abstract interpreter.

9 CONCLUSION

Partial completeness opens a new perspective in the field of static program analysis by abstract
interpretation. Incompleteness is a common situation in program analysis and partial completeness
allows us to refine the notion of incomplete analysis by tuning the amount of noise that we allow in
the analysis. Partial completeness cannot be easily reduced to standard completeness on a coarser
abstract domain. For example, if we consider an abstract domain where the 𝜀-close abstract states
are gathered together (e.g., a set of intervals), then this newly obtained abstract domain is formed
by elements which represent properties of properties of states. This provides a way to express
properties of the analyzer applied to a program 𝑃 on a given input 𝑆 and not properties of what 𝑃
with input 𝑆 computes. On this new domain, checking 𝜀-partial completeness of 𝑃 with input 𝑆 can
be transferred to checking standard completeness of the analyzer applied to 𝑃 on 𝑆 . Nevertheless,
being an abstract interpretation, this new (meta-)analysis may not be itself complete and, therefore,
may produce false alarms.

For practical usage, our ambition is to encourage future users/designers of abstract interpretation
to use/design abstract domains always equipped with a specific metric of interest. This can be the
result of the same design process used for abstract domains: (1) check the hypothetical invariant
after a few concrete iterations and (2) design the appropriate shapes to include in the abstract
domain. Any deviation from the expected shape (e.g., a larger interval, octagon, ellipsoid) is an error
with a corresponding value. The corresponding abstract quasi metric space will be the collection
of these objects enriched with a quasi metric expressing the relative precision among them. Our
framework provides a way to estimate the imprecision of program analysis and hence it helps the
user in compressing the resulting error below a given bound. We believe that viewing program

analysis as an approximate computation, as we are used to in numerical analysis, can provide a

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

Partial (In)Completeness in Abstract Interpretation 59:29

paradigm shift in the way we use/design abstract domains. This makes the error component, which
is unavoidable in program analysis, clear in particular to non-expert users, hence providing the
appropriate tools to fully control its propagation.
As future work, we plan to modify the proof system in Fig. 7 in order to deal with widening

operators. By definition, widening may easily inject unbound errors in the iterates of the abstract
interpreter. To this end, it is interesting to observe that the result of a widening operator over

a non-ACC abstract domain 𝐴 and for a program 𝑃 with abstract input 𝑆♯, can be considered as

analyzing 𝑃 with input 𝑆♯ over a new ACC abstract domain which is built over 𝐴 by the widening

operator chosen and specialized with the program 𝑃 and input 𝑆♯.
Our proof system types any program/input pair (𝑃, 𝑆) with a bound of the error induced by

the abstract interpreter applied to (𝑃, 𝑆). In theory we can see the proof system as an abstract
interpretation itself, and use our same framework to estimate its power/quality at a higher type.
All these ideas relate to a paper by Cousot et al. [2019] and can be considered as a future work to
evaluate the precision of our proposed proof system.
Furthermore, we aim to define the notion of partial completeness cliques, following the first

definition in complexity theory by Asperti [2008], hence extending the results in [Bruni et al. 2020]
to the case of partial completeness. As in the case of complete abstractions for a given program, also
in the case of partial complete abstract domains the underlying lattice structure plays a central role.
For this reason, we plan to study the existence of minimal domain transformers that can ensure the
𝜀-partial completeness of the analysis w.r.t. a given program and constant 𝜀, as done in [Giacobazzi
et al. 2000] for the case of standard completeness.

Our work has a strong connection to code obfuscation [Collberg and Nagra 2009]. Code obfusca-
tion are program transformations explicitly designed to degrade the results of program analysis,
namely to induce imprecision, and therefore incompleteness [Giacobazzi 2008; Giacobazzi and Mas-
troeni 2012; Giacobazzi et al. 2017]. Being able to control and quantify the amount of imprecision
induced in the abstract interpretation by a code obfuscating program transformation, could allow
us to measure the potency of these transformations. This is still one of the main open challenges in
software protection [Ceccato et al. 2019; Collberg et al. 2011; Sutter et al. 2019]. In this perspective,
our method would provide a very first method to semantically quantify the potency of any code
transformation techniques that aim to reduce the precision of program analysis.
Although the decidability requirement of the predicate 𝛿𝐴 (𝑎, 𝑏) ≤ 𝜀 resembles the decidability

of a Blum’s complexity measure [Blum 1967], our definition of quasi-metrics 𝐴-compatible is not
a Blum complexity measure. We plan to deepen our study in order to formalize a measure of
imprecision for abstract interpretation that satisfies the Blum’s axioms in order to define partial
completeness classes as complexity classes.
We also plan to extend the concept of partial complete abstract interpretation to non-GCs/GIs.

For example, to the case of convex polyhedra [Cousot and Halbwachs 1978] and symbolic abstract
domains, such as the domain of regular or indexed grammars [Campion et al. 2019].

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers of POPL2022 for their detailed comments. This work
has been partially supported by the grant PRIN2017 (code: 201784YSZ5) łAnalysiS of PRogram
Analyses (ASPRA)ž and the project łDipartimenti di Eccellenza 2018-2022ž funded by the Italian
Ministry of Education, Universities and Research (MIUR).

REFERENCES

Andrea Asperti. 2008. The intensional content of Rice’s theorem. ACM SIGPLAN Notices 43, 1 (2008), 113ś119. https:

//doi.org/10.1145/1328438.1328455

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

https://doi.org/10.1145/1328438.1328455
https://doi.org/10.1145/1328438.1328455

59:30 Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi

Manuel Blum. 1967. A machine-independent theory of the complexity of recursive functions. Journal of the ACM (JACM)

14, 2 (1967), 322ś336. https://doi.org/10.1145/321386.321395

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras, and Dusko Pavlovic. 2020. Abstract extensionality:

on the properties of incomplete abstract interpretations. PACMPL 4, POPL (2020), 28:1ś28:28. https://doi.org/10.1145/

3371096

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract

Interpretations. In Proc. 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2021). IEEE Computer

Society, 1ś13. https://doi.org/10.1109/LICS52264.2021.9470608 Distinguished paper.

Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. 2019. Abstract Interpretation of Indexed Grammars. In

International Static Analysis Symposium. Springer, 121ś139. https://doi.org/10.1007/978-3-030-32304-2_7

Ignacio Casso, José F Morales, Pedro López-García, Roberto Giacobazzi, and Manuel V. Hermenegildo. 2019. Computing

abstract distances in logic programs. In International Symposium on Logic-Based Program Synthesis and Transformation.

Springer, 57ś72. https://doi.org/10.1007/978-3-030-45260-5_4

Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo Falcarin, Marco Torchiano, Bart Coppens, and Bjorn De Sutter. 2019.

Understanding the behaviour of hackers while performing attack tasks in a professional setting and in a public challenge.

Empir. Softw. Eng. 24, 1 (2019), 240ś286. https://doi.org/10.1007/s10664-018-9625-6

Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for

Software Protection. Addison-Wesley Professional.

Christian S. Collberg, Jack W. Davidson, Roberto Giacobazzi, Yuan Xiang Gu, Amir Herzberg, and Fei-Yue Wang. 2011.

Toward Digital Asset Protection. IEEE Intelligent Systems 26, 6 (2011), 8ś13. https://doi.org/10.1109/MIS.2011.106

Patrick Cousot. 2021. Principles of Abstract Interpretation. The MIT Press, Cambridge, Mass.

Patrick Cousot and Radhia Cousot. 1976. Static determination of dynamic properties of programs. In Proceedings of the 2nd

International Symposium on Programming. Dunod, Paris, 106ś130. https://doi.org/10.1145/390019.808314

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages. ACM Press, 238ś252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of the 6th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. ACM Press, 269ś282. https://doi.org/10.1145/

567752.567778

Patrick Cousot and Radhia Cousot. 1992a. Abstract interpretation frameworks. J. Logic and Comput. 2, 4 (1992), 511ś547.

https://doi.org/10.1093/logcom/2.4.511

Patrick Cousot and Radhia Cousot. 1992b. Comparing the Galois connection and widening/narrowing approaches to

abstract interpretation (Invited Paper). In Proc. of the 4th Internat. Symp. on Programming Language Implementation

and Logic Programming (PLILP ’92) (Lecture Notes in Computer Science, Vol. 631), M. Bruynooghe and M. Wirsing (Eds.).

Springer-Verlag, 269ś295. https://doi.org/10.1007/3-540-55844-6_142

Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2018. Program analysis is harder than verification: A computabil-

ity perspective. In International Conference on Computer Aided Verification. Springer, 75ś95. https://doi.org/10.1007/978-

3-319-96142-2_8

Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2019. A2I: Abstract2 Interpretation. Proc. ACM Program. Lang. 3,

POPL, Article 42 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290355

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program. In

Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM

Press, New York, NY, Tucson, Arizona, 84ś97. https://doi.org/10.1145/512760.512770

Federico Crazzolara. 1997. Quasi-metric Spaces as Domains for Abstract Interpretation. In 1997 Joint Conf. on Declarative

Programming, APPIA-GULP-PRODE’97, Grado, Italy, June 16-19, 1997, Moreno Falaschi, Marisa Navarro, and Alberto

Policriti (Eds.). 45ś56.

Alessandra Di Pierro and Herbert Wiklicky. 2000. Measuring the precision of abstract interpretations. In International

Workshop on Logic-Based Program Synthesis and Transformation. Springer, 147ś164.

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Facebook.

Commun. ACM 62, 8 (2019), 62ś70. https://doi.org/10.1145/3338112

Roberto Giacobazzi. 2008. Hiding Information in Completeness Holes - New perspectives in code obfuscation and water-

marking. In Proc. of The 6th IEEE International Conferences on Software Engineering and Formal Methods (SEFM’08). IEEE

Press., 7ś20. https://doi.org/10.1109/SEFM.2008.41

Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. 2015. Analyzing Program Analyses. In Proceedings of the

42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,

January 15-17, 2015, Sriram K. Rajamani and DavidWalker (Eds.). ACM, 261ś273. https://doi.org/10.1145/2676726.2676987

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

https://doi.org/10.1145/321386.321395
https://doi.org/10.1145/3371096
https://doi.org/10.1145/3371096
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1007/978-3-030-32304-2_7
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/s10664-018-9625-6
https://doi.org/10.1109/MIS.2011.106
https://doi.org/10.1145/390019.808314
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/978-3-319-96142-2_8
https://doi.org/10.1007/978-3-319-96142-2_8
https://doi.org/10.1145/3290355
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3338112
https://doi.org/10.1109/SEFM.2008.41
https://doi.org/10.1145/2676726.2676987

Partial (In)Completeness in Abstract Interpretation 59:31

Roberto Giacobazzi and Isabella Mastroeni. 2012. Making abstract interpretation incomplete: Modeling the potency of

obfuscation. In International Static Analysis Symposium. Springer, 129ś145. https://doi.org/10.1007/978-3-642-33125-1_11

Roberto Giacobazzi, Isabella Mastroeni, and Mila Dalla Preda. 2017. Maximal incompleteness as obfuscation potency. Formal

Aspects of Computing 29, 1 (2017), 3ś31. https://doi.org/10.1007/s00165-016-0374-2

Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. 2000. Making Abstract Interpretation Complete. Journal of

the ACM 47, 2 (March 2000), 361ś416. https://doi.org/10.1145/333979.333989

Dexter Kozen. 1997. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems (TOPLAS) 19, 3

(1997), 427ś443. https://doi.org/10.1145/256167.256195

Vincent Laviron and Francesco Logozzo. 2009. Refining Abstract Interpretation-Based Static Analyses with Hints. In Proc. of

APLAS’09 (Lecture Notes in Computer Science, Vol. 5904). Springer-Verlag, 343ś358. https://doi.org/10.1007/978-3-642-

10672-9_24

Francesco Logozzo. 2009. Towards a Quantitative Estimation of Abstract Interpretations. In Workshop on Quantitative

Analysis of Software (workshop on quantitative analysis of software ed.). Microsoft. https://www.microsoft.com/en-

us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/

Antoine Miné. 2017. Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation. Foundations and Trends

in Programming Languages 4, 3-4 (2017), 120ś372. https://doi.org/10.1561/2500000034

Hartley Rogers. 1992. Theory of recursive functions and effective computability. The MIT press.

Pascal Sotin. 2010. Quantifying the precision of numerical abstract domains. Technical Report HAL Id: inria-00457324. INRIA.

https://hal.inria.fr/inria-00457324

Bjorn De Sutter, Christian S. Collberg, Mila Dalla Preda, and Brecht Wyseur. 2019. Software Protection Decision Support

and Evaluation Methodologies (Dagstuhl Seminar 19331). Dagstuhl Reports 9, 8 (2019), 1ś25. https://doi.org/10.4230/

DagRep.9.8.1

Arnaud Venet. 1996. Abstract cofibered domains: Application to the alias analysis of untyped programs. In International

Static Analysis Symposium. Springer, 366ś382. https://doi.org/10.1007/3-540-61739-6_53

Wallace Alvin Wilson. 1931. On quasi-metric spaces. American Journal of Mathematics 53, 3 (1931), 675ś684. https:

//doi.org/10.2307/2371174

Glynn Winskel. 1993. The formal semantics of programming languages: an introduction. MIT press.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 59. Publication date: January 2022.

https://doi.org/10.1007/978-3-642-33125-1_11
https://doi.org/10.1007/s00165-016-0374-2
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/978-3-642-10672-9_24
https://doi.org/10.1007/978-3-642-10672-9_24
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://doi.org/10.1561/2500000034
https://hal.inria.fr/inria-00457324
https://doi.org/10.4230/DagRep.9.8.1
https://doi.org/10.4230/DagRep.9.8.1
https://doi.org/10.1007/3-540-61739-6_53
https://doi.org/10.2307/2371174
https://doi.org/10.2307/2371174

	Abstract
	1 Introduction
	2 Background
	2.1 Order and Measure Theory
	2.2 Abstract Interpretation

	3 Quasi-metrics on Abstract Domains
	4 Partial Completeness
	5 Programs, Semantics, and Abstract Semantics
	5.1 The Syntax
	5.2 The Concrete Semantics
	5.3 The Abstract Semantics
	5.4 Recursive Abstract Domains

	6 Classes of Partial Complete Programs
	6.1 Partial Complete Programs
	6.2 Recursive Properties of Partial Complete Programs

	7 Estimating the Imprecision of an Abstract Interpreter
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

