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Abstract

Metamorphic malware are self-modifying programs which apply semantic preserving transformations to their own code in
order to foil detection systems based on signature matching. Metamorphism impacts both software security and code protection
technologies: it is used by malware writers to evade detection systems based on pattern matching and by software developers
for preventing malicious host attacks through software diversification. In this paper, we consider the problem of automatically
extracting metamorphic signatures from the analysis of metamorphic malware variants. We define a metamorphic signature
as an abstract program representation that ideally captures all the possible code variants that might be generated during
the execution of a metamorphic program. For this purpose, we developed MetaSign: a tool that takes as input a collection
of metamorphic code variants and produces, as output, a set of transformation rules that could have been used to generate
the considered metamorphic variants. MeraSign starts from a control flow graph representation of the input variants and
agglomerates them into an automaton which approximates the considered code variants. The upper approximation process
is based on the concept of widening automata, while the semantic preserving transformation rules, used by the metamorphic
program, can be viewed as rewriting rules and modeled as grammar productions. In this setting, the grammar recognizes the
language of code variants, while the production rules model the metamorphic transformations. In particular, we formalize
the language of code variants in terms of pure context-free grammars, which are similar to context-free grammars with no
terminal symbols. After the widening process, we create a positive set of samples from which we extract the productions of the
grammar by applying a learning grammar technique. This allows us to learn the transformation rules used by the metamorphic
engine to generate the considered code variants. We validate the results of MetaSign on some case studies.

Keywords Metamorphic malware - Malware signature - Widening automata - Pure context-free grammars - Learning
grammars

1 Introduction

Detecting and neutralizing computer malware, such as
worms, viruses, trojans and spyware, is a major challenge
in modern computer security, involving both sophisticated
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intrusion detection strategies and advanced code manipu-
lation tools and methods. Despite the relentless effort of
researches in developing sophisticated malware detection
tools, the number of malware is growing exponentially
together with their complexity [1]. According to Symantec’s
2019 Internet Threat Report, the number of new malware
samples had an increase of 22.9% in 2017, and the number
of destructive malware had an increase of 25% in 2018 [1].
Interestingly, the 63% of malware comes from already exist-
ing or known attacks, as reported in Ponemon Institute’s 2018
State of Endpoint Security Risk [2]. The Ponemon Institute’s
reports that 76% of organizations are using signatures-based
antimalware systems to protect themselves. These antimal-
ware tools analyze known malware samples in order to
extract their signatures and collect them in a database. Pat-
tern matching is then used to compare the byte sequence
comprising the body of the malware against the signature
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database [3]. This process takes a long time and the mal-
ware samples may leave undetected in this period. Moreover,
the efficiency of signature-based detection systems heavily
depends on the completeness of the database of malware
signatures used (which may be different among different anti-
malware tools).

Malware writers have responded by using a variety of
camouflage techniques in order to avoid signature-based
detection. Encryption [4] is one of the simplest methods
employed by malware writers to avoid detection. It is based
on two main sections: the main body, also known as the
payload, and a decryption loop which is responsible of
the encryption and decryption of the payload. Oligomor-
phism [5] is an advanced form of encryption: it contains a
collection of different decryption routines that are randomly
chosen for every new infection. This ensures that the decryp-
tion code varies among the different malware instances.
Polymorphism [6] is actually the most complicated type of
oligomorphism and encryption. The difference stems in the
unlimited number of encryption methods that allow us to
generate an endless sequence of decryption patterns.

Metamorphism [4] emerged in the last decade as an
effective alternative strategy to foil signature-based mal-
ware detectors. Unlike the previous camouflage techniques,
metamorphic malware have no encrypted code (no need of
decryption), but like polymorphic malware they employ a
mutation engine that, instead of modifying the decryption
routine, mutates the code of the whole malware. Thus, Meta-
morphic malware [4] are self-modifying programs which
iteratively apply code transformation rules that preserve the
semantics of programs. These code transformations change
the syntax of code in order to foil detection systems based
on signature matching. These programs are equipped with a
metamorphic engine that usually represents the 90% of the
whole program code [4]. This engine takes as input the mal-
ware own code and it produces, at run time, a syntactically

different but semantically equivalent program. One of the
first known metamorphic virus produced for DOS was ACG,
in 1998 [3], and the first effort on 32-bits metamorphic virus
targeting the Portable Executable files was W32.Appartition
that spread in 2000 [3]. The anatomy of a metamorphic mal-
ware includes:

1. Disassembler;
2. Code transformer;
3. Assembler.

When the malware finds the location of its own code, it uses
an internal disassembler to convert the code into assembly
instructions. The heart of the mutation engine is a code trans-
former, also called obfuscator, that is responsible of changing
the binary sequence of malware code by applying semantic
preserving rewriting rules. The last module, the Assembler,
converts the mutated assembly code produced by the muta-
tion engine, into machine binary code.

We call metamorphic variants the program variants gen-
erated by the mutation engine. At the assembly level,
these semantic preserving transformations used by the meta-
morphic engine include: semantic-nop/junk insertion, code
permutation, register swap and substitution of equivalent
sequences of instructions [7] (see Fig. 1 for an example).

The large amount of possible metamorphic code variants
makes it impractical to maintain a signature set that is large
enough to cover most or all of these variants, thus making
standard signature-based detection ineffective. Conversely,
heuristic techniques may be prone to false positives or false
negatives. The key to identify these type of malicious pro-
grams consists in considering semantic program features
and not purely syntactic program features, thus capturing
code mutations while preserving the semantic intent [9].
For this reason, we would like to capture those semantic
aspects that allow us to detect all the possible variants that

Code obfuscated through Code obfuscated through Code obfuscated through
Original code dead-code insertion code transposition instruction substitution
call Oh call Oh call Oh call Oh
pop ebx pop ebx pop ebx pop ebx
lea ecx, [ebx+42h] lea ecx, [ebx+42h] jmp S2 lea ecx, [ebx+42h]
push ecx nop (*) S3: push eax sub esp, 03h
push eax nop (*) push eax sidt [esp - 02h]
push eax push ecx sidt [esp - 02h] add [esp], 1ch
sidt [esp - 02h] push eax jmp S4 mov ebx, [esp]
pop ebx inc eax (*%) add ebx, 1ch inc esp
add ebx, 1ch push eax jmp S6 cli
cli dec [esp - 0Oh] (*%) 822 lea ecx, [ebx+42h ] mov ebp, [ebx]
mov ebp, [ebx] dec eax (*%) push ecx

sidt [esp - 02h] jmp S3

pop ebx S4: pop ebx

add ebx, 1ch cli

cli jmp S5

mov ebp, [ebx] S5: mov ebp, [ebx]

Fig.1 Examples of semantic preserving transformations applied to a fragment of Chernobyl/CHI malware, taken from [8]. Newly added instructions

are highlighted
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XOor eax, eax

Xor eax, eax
mov [42177], 4
push [42177]

mov eax, 4
add eax, 10

mov [50647], eax q

xor eax, [50647]

pop eax
add eax, 10

Metamorphic Signature

’ -

4 ADD — ADD, MOV &
‘ ApD -3 MoV, ADD %
¢ MOV — PUSH, POP
I MOV — MOV, MOV
|}
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POP — POP, MOV
PUSH — MOV, PUSH

L I

|
4+ XOR — MOV, XOR ’

Xor eax, eax g:;he:x “XOR—) XOR, MOV'I
mov eax, 4 mov [33490], 10 . e
add eax, 10 add eax, [33490] o« Se--
WIDENING INFERRED
VARIANTS AUTOMATON RULES

Fig.2 Capturing the metamorphic signature

can be generated by the metamorphic engine. We use the term
metamorphic signature to refer to an abstract program repre-
sentation that ideally captures all the possible code variants
that might be generated during the execution of a meta-
morphic program. A metamorphic signature is therefore any
(possibly decidable) approximation of the properties of code
evolution.

The goal of this work is to statically extract an approxi-
mated version of the so called metamorphic signature, i.e.,
a signature of the metamorphic engine itself. In this setting,
a metamorphic signature consists of a set of rewriting rules
that the malware can use to change its code. These rules
can be represented as a pure context-free grammar [10],
having instructions as terminal symbols, and can be trans-
formed into equivalent instructions following the grammar
productions. For this purpose, we have built a tool, called
MetaSign, that takes as input simplified/abstract versions of
the metamorphic code variants, and it represents them as
Control Flow Graphs (CFG). The resulting representation is
isomorphic to Finite State Automata (FSA) over an alpha-
bet of instructions [11]. For this reason, from now on, we
use the terms CFG and automaton interchangeably. Start-
ing from CFGs representation of the variants, MetaSign
embeds them in an over-approximating CFG through a spe-
cific widening operator applied to automata [11]. The key
idea is to build a unique CFG for all the code variants that
over-approximates the union of their recognized languages,
i.e., it models the metamorphic behavior as a regular lan-
guage of abstract instructions. This process is called regular
metamorphism [12]. Finally, from the resulting widening
CFG, MetaSign tries to learn the rewriting rules used to
generate each variant through a simple learning grammar
technique [13,14] and it produces, as output, the inferred
rules. The general structure of the tool is represented in Fig. 2.

In order to validate the quality of the tool output, a meta-
morphic engine is implemented in MetaSign, allowing us to
generate a collection of metamorphic code variants from a
given program. Our metamorphic engine takes as input a pro-
gram written in an intermediate language similar to the x86
assembly [15] and it randomly chooses the rewriting rules
to apply in order to generate the metamorphic variants. The
metamorphic rules implemented are a subset of those used
by the metamorphic malware MetaPHOR [4]. This metamor-
phic engine allows us to quickly generate numerous test sets,
feed (part of) them as inputs to MetaSign and check the qual-
ity of the results by comparing the rules inferred by MetaSign
with those actually applied by the metamorphic engine.

The rest of this paper is organized as follows: in Sect. 2
we discuss some related works, Sect. 3 presents background
concepts used in the rest of the paper, Sect. 4 explains our
approach towards capturing metamorphic signatures, Sect. 5
describes the implementation details of MetaSign , in Sect. 6
we present some results and consideration applied to three
case studies, in Sect. 7 we discuss benefit, drawbacks and
future directions of our approach.

2 Related work

Behavioural malware detectors are based on an abstract
behavioural model of malware whose design is driven by
the a priori knowledge of the obfuscating transformations
typically used by malware writers to evade detection. So,
for example, variable renaming is typically handled by using
symbolic names for variables. Formal methods have been
extensively used for specifying the malicious behaviour of
malware while abstracting from implementation details usu-
ally changed by obfuscation. The following papers are some
related works based on formal methods that have inspired
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our work on metamorphic signatures extraction. In [16] the
authors propose a malware detection scheme based on the
identification of suspicious sequences of system calls. In par-
ticular, they consider a subgraph of the program CFG, which
contains only the nodes that represent certain system calls
and, finally, they check if this subgraph contains some known
malicious system call sequences. In [17] the authors describe
a malware detection system based on language containment
and unification. The malicious code and the possible infected
program are modeled as automata with unresolved symbols
and placeholders for registers dealing with certain types of
obfuscation. In this configuration, a program exhibits mali-
cious behaviour if the intersection between the malware’s
automaton language and the program’s automaton language
is not empty. In [18] the authors specify malicious behaviour
through a Linear Temporal Logic (LTL) formula and then
use the SPIN model checker to check if this property is satis-
fied by the CFG of a suspicious program. In [19] the authors
introduce a new Computation Tree Predicate Logic (CTPL)
temporal logic, which is an extension of the logic CTL, which
takes into account the quantification of the registers, allow-
ing a natural presentation of malicious patterns. In [20] the
authors describe the malicious behaviour through a template
that is a generalization of the malicious code that aims at
expressing the malicious intent while excluding the details
of the implementation. The idea is that the template should
not distinguish between irrelevant variants of the same mal-
ware obtained through obfuscation processes. For example,
the proposed template uses symbolic variables/constants to
handle the renaming of variables and registers, and considers
the malware CFG in order to handle code reordering. Finally,
they provide an algorithm to verify if a program presents the
behaviour expressed by the template. This algorithm is based
on the unification between the program variables/constants
and the symbolic variables/constants of the malware. All the
approaches presented so far use formal methods to build
a generalized semantic signature that ideally matches all
the malware variants. The generalization of the signature is
guided by the knowledge of the transformations typically
used by malware to avoid detection. Whereas our approach
aims at extracting the generalized signature from the analysis
of a specific metamorphic malware. Indeed, the goal of our
detection strategy is to learn the code transformation rules
applied by the metamorphic engine embedded in the mal-
ware under analysis, and then to use these rules to recognize
any possible malware variant.

Other approaches are based on the specification of the
metamorphic engine obtained by manually analyzing the
metamorphic code. For example, in [21], Walenstein et al.
propose to model the metamorphic engine as a term-rewriting
systems. The authors then reduce the problem of recognizing
metamorphic variants to the normalizer construction prob-
lem (NCP), namely to the problem of ensuring a normal
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form to a term-rewriting system. Indeed, program normaliza-
tion (when possible) provides an efficient way to remove the
variety introduced by metamorphism. The authors assume
that the metamorphic engine to analyze is already known
and it is represented by a set of rewriting rules. This knowl-
edge is typically the result of a time and cost consuming
tracking analysis, based on emulation and heuristics, which
requires intensive human interaction in order to achieve an
abstract specification of code features that are common to
the malware variants obtained through various obfuscations
and mutations. Conversely, we propose a tool that is able
to automatically infer the set of rewriting rules that model
the metamorphic engine. Indeed, as future work, it would be
interesting to apply the NPC approach to the rewriting rules
extracted with our methodology.

Structural similarity-based approaches, such as struc-
tural entropy and compression-based techniques, have been
applied by Baysa et al. in [22] and Lee et al. in [23] to
metamorphic malware detection. While structural entropy
involves the examination of the raw bytes of the mutated file,
compression-based detection involves the use of compres-
sion ratios of the mutated file in a bid to create sequences
that represent the file. Rather than considering the raw bytes
structure of metamorphic malware variants, we specify code
mutations in terms of grammar rules extracted from the anal-
ysis of some metamorphic malware samples.

Wong and Stamp [24] proposed a statistical-based tech-
nique to detect metamorphic malware based on hidden
Markov Model (HMM) and provided a benchmark used
in other studies as Canforaet al. [25], Lin and Stamp [26],
Musale et al. [27], Shanmugam et al. [28] on metamorphic
malware. They analyzed the similarity degree of metamor-
phism produced by different malware generators, such as
G2, MPCGEN, NGVCK and VCL32, by training HMM on
the opcode sequences of the metamorphic malware samples.
Instead, we base our metamorphic model on the formal lan-
guage of pure context-free grammars and we analyze the
similarity degree on rewriting rules, i.e., pure context-free
grammars productions, captured by the learner.

In [12] Dalla Preda et al. follow the idea of extracting the
specification of the metamorphic engine and of the possible
code variants, from the metamorphic code analysis. They
introduce a semantics for self-modifying code, called phase
semantics, and prove its correctness by proving that it is
an abstract interpretation of standard trace semantics. Phase
semantics precisely models the metamorphic behaviour of
the code, providing a set of program traces which correspond
to the possible evolution of the metamorphic code during
execution. Therefore, they demonstrate that metamorphic
signatures can be automatically extracted by abstract inter-
pretation of phase semantics. In particular, they introduce
the notion of regular metamorphism, in which the invariants
of phase semantics can be modeled as a FSA representing
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the code structure of all possible metamorphic changes of a
metamorphic code. As a matter of fact, the work in [12] can
be considered as a general formal framework for modeling
malware metamorphism, while our work provides a practical
application of the formal framework that allows us to auto-
matically extract the metamorphic signatures as a rewriting
rules system.

3 Preliminaries

Mathematical notation Given two sets S and 7, we denote
with g (S) the powerset of S, with S \ T the set-difference
between S and 7', with S C T strictinclusionand with S € T
inclusion. Let A* be the set of finite sequences, also called
strings, of elements of A. We denote with € the empty string,
with |w| the length of the string w € A*, such that |¢| = 0,
and the concatenation of w, v € A* as wv.

Finite State Automata (FSA) An FSA M isatuple (Q, 8, S, F,
A) where:

Q is the set of states;

—8:0 x A— p(Q) is the transition relation;
— § C Q is the set of initial states;

— F C Q is the set of final states;

A is the finite alphabet of symbols.

A transition is a tuple (g, s, q), where ¢, ¢’ € Q and s € A,
such that ¢’ € 8(q, s). Let w € A* be a string of alphabet
symbols, we denote with §* : O x A* — ¢ (Q) the extension
of § to strings is defined as follow:

- 8"(q.€) = q;
- 8%(q, ws) = Uq’eﬁ*(q,w)a(q/v 5).

A string w € A* is accepted by the automata M if there
exists an initial state gy € S such that §*(gg, w) N F # @.
The language £(M) accepted by an FSA M is the set of all
strings accepted by M, that is:

LM) = {weA*|3qy € S.8(qo, w) N F # @)

Given an FSA M and a partition 7 over its states, the quo-
tient automaton over 7, denoted M/, is the tuple M/ =
(Q',8,8, F', A) induced by M, where:

0’ ={[qlx | g € O} is the new set of states based on the
partition 7

-8 :0' x A— p(Q) is the transition relation;

S" = {[qlx | g € S} the initial states;

— F' ={[qlx | g € F} the final states.

The transition relation &’ is defined as:

8'(Iq)xs$) = Upelglo {19']x 1 4" € 8(p, )}

AnFSA M = (0,4, S, F, A) can be equivalently specified
as a graph M = (Q, E, S, F) with a node ¢ € Q for each
automaton state and a labeled edge (¢, s, ¢') € E if and only
if g’ € 8(q, s). We define the language of length k of a node
of an automaton as the set of all the strings of length less or
equal than & that are reachable from the considered node [11].

Widening automata We refer to the widening operation over
FSA described by D’Silva [11]. We consider an increasing
sequence MoM ... M; of FSA ordered with respect to lan-
guage inclusion, that is:

L(My) € L(My) S -+ C L(My)

where £(M;), with i € [0, k], is the language recognized
by M;. Moreover, D’Silva in his thesis considers a fix-point
computation of a function H on automata where

LMi11) = LM;) U L(H(M;))

Take two FSA over a finite alphabet A in the considered
sequence M; = (Q;, E;, ;) and M; = (Q;, E;, S;) with
i < j,where Q isthe setof states, E C Q x A x Q is the set
of triples representing edges between states, and S € Q is
the set of initial states. The widening between M; and M is
formalized in terms of an equivalence relation R € Q; x Q;
between the set of states of the two automata. The equivalence
relation R, also called widening seed, is used to define another
equivalence relation =g € Q; x Q; over the states of M,
such that:

=R = ROR7l

The widening between M; and M ;, denoted M; v M ;,is given
by the quotient of M; with respect to the partition induced
by =g:

M;v Mj = M;/ =g

By changing the widening seed, i.e., the equivalence relation
R, we obtain different widening operators. It has been proved
in [11] that convergence is guaranteed when the widening
seed is the relation R, € Q; x Q; such that (g;,q;) € R,
if ¢; and g recognize the same language of strings of length
at most n. When considering the widening seed R,,, we have
that two states ¢ and ¢’ of M; are in equivalence relation
=g, if they recognize the same language of strings of length
at most n that is recognized by a state r of M;, i.e., if there
exists r € Q; : (r,q) € R, and (r,q’) € R,. Thus, the
parameter n tunes the length of the strings that we consider
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for establishing the equivalence of states and, therefore, for
merging them in the widening, namely the more abstract will
be the result of the widening. Observe that, the smaller is n
the more information will be lost by the widening. We denote
with v/, the widening operator that uses R, as widening seed.

Pure grammars A pure grammar [10] is a triple G =
(%, P, S) where:

— X is a finite alphabet;

— S C X¥*is a finite set of words called axioms;

— P is afinite set of ordered couples (x, y) of words in the
alphabet X.

Elements of P are called productions and denoted by x — y.
Given a pure grammar G, a word w € £* directly derives
aword w' € X*, written w 2 w', briefly w = w’ if G

is understood, if there exist two words w;, wp, € X* and a
production x — y € P such that:

w=wxwy A w =wyw;

The reflexive transitive closure of the relation = is written
= The language generated by a pure grammar G is called
pure language [10] and it is defined by:

L(G) = {weT*|s= wwiths € S}

If the left part of each production x — y of G is com-
posed of one letter, namely |x| = 1, then G is called pure
context-free (PCF) grammar. The language generated by a
PCF grammar is called pure context-free language [10]. A
PCF grammar can be viewed as a context-free grammar with
no non-terminal symbols.

Example 1 Consider the language L = {a"cb"™ | n > 1}. L,
is generated by a PCF grammar with axiom acb and pro-
duction ¢ — acb. This means that L; is a PCF language.
Consider now the language L, = {a"b" | n > 1}. L, is gen-
erated by a pure grammar with axiom ab and production
ab — a’b*. By analyzing the possible productions for a
and b, it is easy to conclude that L, is a pure language and
not PCFE. Note that, despite L, is non-PCEF, it is a regular
language.

To conclude, we recall some important results with regard
to pure languages and the other classes of languages in the
Chomsky hierarchy. We denote with PURE the class of pure
languages, PCF the class of PCF languages, CF the class
of context-free languages and REG the class of regular lan-
guages. The following statements are proved in [10,29]:

— PCF C PURE ;
— REG C PURE ;
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— REG # PCF (see Example 1);
— CF # PURE ;
— PCF C CF.

4 The approach

As argued in the previous sections, in this work we aim at
defining an automatic technique for the extraction of a meta-
morphic signature that does not need any a priori knowledge
of the code transformation rules used by the metamorphic
engine, where this engine could be implemented either inter-
nally in the malware code or through an external program,
like in Android malware [30]. Our work is based on the anal-
ysis of the metamorphic process of the metamorphic malware
MetaPHOR. MetaPHOR [4], also known as Win32/Smile or
ETAP, was written by the malware writer Mental Driller.
It was released in the most recent version in March 2002
and it is a cross-platform infector capable of infecting both
Windows 32-bit files and Linux ELF files. The Mental
Driller named it MetaPHOR from the words “Metamorphic
Permutating High-Obfuscating Reassembler”, which accu-
rately describes this malware. An innovative feature of the
MetaPHOR metamorphic engine is the use of an interme-
diate representation which allows to abstract away from the
complexity of the underlying processor’s instruction-set and
to simplify the metamorphic transformations.

Besides the other malware phases, the most interesting one
for our purposes is the metamorphic phase, which follows the
general structure presented in Sect. 1 (see Fig.3): disassem-
bly, compression, permutation, expansion, reassembly. The
disassembly phase translates binary code in the intermediate
representation mentioned before, while the reassemply phase
converts it back to binary code. The malware writer points
out that these two phases are the most difficult and delicate
since they represent the 80% of the malware code and if an
error occurs during one of these phases, the entire malware
execution crashes (with possible error windows) [4]. The
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basic idea of the compression process is to compress in one
instruction what the expansion process codes in many. This is
achieved by randomly applying transformations that are the
inverse of the ones used by the expansion process. Exam-
ples of semantic-preserving transformations implemented in
MetaPHOR are [4]:

1. ITnstr — Instr rules:

— xor Reg ; -1 —>not Reg
— sub Reg ; Imm — add Reg, Imm
2. Instr ; Instr — Instr rules:

— push Imm ;
— mov Mem, Imm ;

pop Reg — mov Reg, Imm
push Mem — push Imm

3. Instr; Instr ; Instr — Instr rules:

— mov Mem, Reg; op Mem,Reg2;
Mem — op Reg, Reg2

mov Reg,

4. Instr ; Instr ; Instr — Instr ; Instr
rules:
— mov Mem,Reg; test Mem,Reg2; jcc

@xxx— test Reg,Reg2 ; jcc @xxxX

The permutation phase simply splits the code into blocks of
random size and, once they have been computed and shuffled
in memory, they are linked by direct jump-instructions and a
jump at the first code block is inserted at the very beginning
of the code. For a detailed description of the MetaPHOR
implementation, the reader can refer to [4].

Our idea consists in assembling an approximated rep-
resentation of the considered metamorphic variants and,
afterwards, using a learning grammar technique in order to
extract the rewriting rules that could form a metamorphic sig-
nature (Fig. 2). The approximating process is called regular
metamorphism and it consists in a single automaton, i.e., a
regular language, created by the widening operation on the
CFG representations of the malware variants. The language
recognized by this automaton over approximates the possi-
ble execution paths of the considered metamorphic variants.
Hence, the two core parts of our approach are: the regular
metamorphism and the application of a learning algorithm
capable of inferring the possible transformation rules used
by the metamorphic malware.

Regular metamorphism Rather than consider the standard
CFG model with nodes given by program’s instructions, we
consider an abstract CFG where the operands of each instruc-
tion are removed through an abstraction function:

o : Instr — Instr

For example, the instruction mov eax, O is abstracted by
o in mov, i.e., a(mov eax, 0) = mov. We have chosen
this abstraction in order to be independent from the particular
locations used in the expansion/compression process (loca-
tion renaming can be handled by using symbolic names).
After generating the language of each node of the CFG of
each metamorphic variant, we apply the widening opera-
tion, choosing as order the number of their instructions . If
VoVi ... Vi are an ordered sequence of metamorphic vari-
ants, then we denote with G(V;) the CFG representation of
program V;. Hence, depending on the widening seed R,,, we
compute the following widening sequence:

Wo =a(G(Vo)) Wit1 =W, v, (Wi Ua(G(Viy1)) (1)
The automaton W is built as the limit of the above widen-
ing sequence and it recognizes all the metamorphic variants
VoVi... Vi

Example 2 Figure 4 shows the widening of two CFGs with
the language length of each node set to 2. Note that each node
represents the instruction executed when the control flow
reaches that node. This means that, the language of length 2
of anode is given by the instruction in it and all the subsequent
instructions directly connected to it. For example, the initial
node with a mov instruction recognizes the language

((mov) , (mov, cmp) )
while the jge node recognizes
((jge), (Jge,sub), (jge,add))

If we increase the widening language length to 3, we obtain
the CFG in Fig. 5. Note that the graph of both results rec-
ognizes the same language, but the CFG in Fig. 5 presents
more nodes. This is due to the higher precision in merging
nodes, i.e., less nodes present the same language.

Learning rewriting rules The general problem of inferring
a grammar starting from an input set of strings of that lan-
guage (the positive set), is an interdisciplinary field studied
for decades and, particularly, in the last years [13]. This prob-
lem can be transformed into the general problem of inferring
a grammar starting from a set of strings belonging to a lan-
guage. In particular, we try to infer a grammar that is able to
generate, at least, all the strings given as input to the algo-
rithm and belonging to the language to be studied. The goal
is to learn a set of rewriting rules that can generate all the
possible metamorphic variants which also can be generated
by the unknown metamorphic engine we are trying to defeat.
Pure grammars have been chosen as a formal representation
for the rewriting rules, because they do not present terminal
symbols but all the symbols are considered as non-terminals.
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/

Fig.4 Widening between two CFGs with widening seed set to 2

In fact, the metamorphic transformation rules are instruc-
tions of the same type, that is, they can be transformed into
other instructions by applying the correct production. Since
the general problem of learning pure grammars from a pos-
itive set is undecidable [14], we move to the formalism of
pure context-free grammars where each production has the
left part size fixed to one symbol. Obviously, this restriction
will lead to a loss of precision in the rules inferred by the tool
as it will only be possible to infer productions of the form
x =yl =1

We can infer an approximated set of rewriting rules from
Wy by analyzing the “positive set” containing all minimum
paths, i.e., strings of words that will cover all the edges con-
necting the initial nodes and the final nodes. In our case, the
language to learn consists of sequences of instructions form-
ing the metamorphic variants given as input (assuming that
they have been generated by a metamorphic engine). Start-
ing from the positive set obtained from the widening CFG
Wi, we apply a simple PCF grammars learner algorithm in
order to capture a (sub)set of transformation rules generat-
ing the variants given as input. The idea that stems from the
learner algorithm [13], consists in constructing a transforma-
tion rule  such that, starting from two variants V;, V; where
Vi < Vj in terms of lines of code, we can obtain V; from V;
by applying the rewriting rule r, written V; 5 V. The rule
r is obtained from the simplification between the two variant
strings without considering the ret instruction.

Example 3 Suppose that, from the positive set, we captured
the following two paths (we omit the final ret):

XOr ,mov, push
xor,push, pop, push
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By transforming the two variants as a rewriting rule and after
the simplification process, we obtain:

*xo¥,mov, pash — xer, push, pop, push

Considering the left part has length 1, then the rule
mov — push, pop

is added to the set of inferred rules.

Finally, the algorithm proceeds by eliminating redundant
rules. An inferred rewriting rule is called redundant, if it can
be generated by other rules in the set of inferred rewriting
rules.

Example 4 Let us suppose that the learning algorithm has
already inferred the following rewriting rules:

1) mov — mov, mov

2)mov — push, pop
Suppose that the learner infers the rule:
mov — push, pop, mov, mov

This rule is superfluous because:

1 2
push, pop, mov, mov :; push, pop, mov :; mov, mov

That is, starting from the right part of the new inferred rule,
we obtained the right part of rule 1) and both rules have the
same left instruction mov. Therefore, we can conclude that
the new rewriting rule is redundant.
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Fig.5 Widening seed set to 3 (v/3)

5 From theory to practice: MetaSign tool

In this section, we present MetaSign' an engine tool written in
Python 3. This tool is able to automatically extract an approx-
imation of the metamorphic malware signature from a set of
metamorphic variants written in an intermediate x86-like
language. In particular, a metamorphic signature consists of
aset of rewriting rules that might be used by the metamorphic
engine to generate the whole set of variants given as input.
We say “might” because the real transformation rules could
differ from the ones generated by the tool, due to several rea-
sons: the approximation process of the widening function,
an input set that is not large enough, the high dissimilarity in
the code of different variants, and so on. Besides the learning
rewriting rules function, the tool provides the possibility of
randomly generating variants starting from an input program
and a fixed set of rewriting rules.

Depending on the execution parameters, the tool can be
executed in one of the following ways (see Fig. 6):

— execution of the metamorphic engine to generate a
desired number of variants starting from a set of instruc-
tions (which will be the starting program) in a x86-like
language written on an input text file (D);

— extraction of the widening CFG from a set of variants
given as input in order to build an unique abstract repre-
sentation of the considered metamorphic variants (2);

— inferring the rewriting rules from the variants approxi-
mation obtained through the widening process applied to

! The latest version of the tool is freely available at https://github.com/
LabSPY-univr/MetaSign.

a set of variants, e.g., a subset of the first phase (2 —
®)
— finally, you can run all the operations above () — @ —

©)2

Following the idea of MetaPHOR, our tool generates and
reads variants written in an intermediate language, both with
the aim of simplifying and abstracting the x86 assembly
language. The intermediate language consists of the classic
%86 instructions having Infel syntax for:

— data manipulation: mov, push, pop, lea;

— mathematical operations: add, sub, and, xor,
or;

— comparison: cmp, test;

— conditional jumps: je, jne, jl, jle, jg, Jjge;

— unconditional jumps: jmp, call;

— ret, nop.

There are three kinds of operands: registers (eax, ebx,

ecx, edx, esp, ebp, esi, edi), integer values
and memory values. Memory values are represented by
square brackets between integer vales or registers, e.g.,
[77382] and [eax], meaning that the real value is pointed
by the address memory 77382 or the address memory inside
eax. New memory values, added by transformation rules,
are generated randomly. For jump instructions, the memory
value to which the instruction can jump corresponds to the
line number where the target instruction is located (the first
line starts from zero). Analogously, for function calls, the
operand of instruction call corresponds to the line number
of the first statement of the function. Each function (includ-

ing the main function) must end with the instruction ret.

Example 5 Consider the following program P, where the
numbers on the left correspond to line numbers:

0: mov eax, 1 4: jmp 1

1: cmp eax, 1000 5: ret

2: jge 5 6: add eax, 1
3: call 6 7: ret

The CFG of the above program is depicted in Fig. 7.

In case of jump or call instructions, the control flow fol-
lows the line number indicated in the instruction (the first
line of all programs starts with 0). Note that, call instructions
start new functions with the first instruction pointed by the
line number.

In the next three sections, we present thoroughly the three
core parts of MetaSign, shown in Fig. 6: the metamorphic
engine (Sect. 5.1), the widening on CFGs (Sect. 5.2) and the
rewriting rules learner (Sect. 5.3).
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Fig.6 MetaSign execution phases

0: mov eax, 1

[1: cmp eax, 1000]4—(4: jmp 1]4—@
A
5: ret

Fig.7 CFG of Example 5

6: add eax, 1

5.1 The metamorphic engine

MetaSign can be executed as a metamorphic engine: it takes
as input a text file containing a sequence of instructions
following the syntax of the intermediate language defined
before, and the number of variants to be generated. This func-
tionality will help us in estimating the output quality of the
tool, simulating a set of real metamorphic variants generated
by the same metamorphic engine. The implemented rewrit-
ing rules are a subset of the rules used by the MetaPHOR
metamorphic engine. They consist in instruction transforma-
tions that preserve the semantics and they could be applied
either to expand (following the rule from right to left) or to
reduce (left to right) the selected instruction. On the time
of writing this article, the following transformation rules are
implemented in our tool:

— push Imm ;
— push Reg ;

pop Reg <> mov Reg, Imm

pop Reg2 <> mov Reg2,Reg
— mov Mem, Imm ; push Mem < push Imm
— mov Mem,Reg ; push Mem <> push Reg
— pop Mem2 ; mov Mem,Mem2 <> pop Mem
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— pop Mem ; mov Reg,Mem <> pop Reg
mov Mem, Imm ; OP Reg,Mem <> OP Reg, Imm
mov Mem2,Mem ; OP Reg,Mem2 <« OP Reg,Mem

— pop Mem ; push Mem < nop

where Imm denotes a numeric value, Reg a register, Mem
a memory value (a number between square brackets), and
OP is any operator accepting two operands. The left and
right operands of the same rewriting rule must be the same.
For example, in order to apply the compression rule num-
ber three, the two Mem values on the left must be equal,
while, for expansion, the Tmm will be equal to the Imm
value on the two instructions generated. If we consider the
« abstraction on the instructions presented in the previous
section, and that OP could be either mov, add, sub,
and, or, xor, lea, cmpor test,than we have /3
possible rewriting rules.

After reading the first input variant, the metamorphic
engine randomly selects: the rewriting rule to apply, the line
of the program where to apply the rule, and whether to apply
the rule as expansion or reduction. If it is not possible to
apply the rewriting rule to the selected instruction, the fol-
lowing instruction will be considered. If the rewriting rule
does not fit any instructions, then another rewriting rule will
be picked up randomly (see Fig. 8 for an example).

5.2 Widening control flow graphs

Each metamorphic variant is represented as a CFG. Each
node of the CFG contains one instruction, e.g., mov eax,
4 , while the edges represent possible control flow of the
program execution. Afterwards, MetaSign abstracts instruc-
tions by eliminating the operands (the o« abstraction defined
in Sect. 4). In order to agglomerate all the CFGs of each
metamorphic variant into an unique approximating CFG, we
use a widening operator. This allows us to obtain a unique
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jmp 4 jmp &
mov eax,4 Rule 1 (+) push 4 Rule 4 (+)
push eax mov — push,pop pop eax push — mov,push
push 10 push eax
pop eax push 10

pop eax

Fig.8 Example of code transformations

0: mov

.

E

mp Je——4: jup Jo——(7: vet )

A

2.

g (e —(Eada)

UA

5: ret

Fig.9 Abstract CFG of Example 6

CFG that contains all the input metamorphic variants that
generalizes the considered mutations. To this end, we have
to compute the language of each node of the CFG.

Example 6 Consider again the program P in Example 5. The
CFG obtained after the application of the abstraction «, is
represented in Fig. 9.

The alphabet of the CFG of P is {mov, cmp, jge, call,
jmp, add, ret}, and the language of length 2 recognized
by each node is:

lang(0) = {(mov), (mov,cmp) }

lang (1) = {(cmp), (cmp,jge)}

lang(2) {(jge), (jge,call), (jge,ret)}
lang(3) = {(call), (call,add)}

lang(4) = {(add), (add, ret)}

lang(5) = {(ret), (ret,jmp)}

lang(6) = {(jmp), (Jmp, cmp) }

lang(7) = {(ret)}

Starting from an increasing sequence of variants, in terms of
number of instructions, Vo V1 V> ... V,,, the widening operator
Vk is defined in Equation (1). At the end, the widening oper-
ator merges all the nodes with the same language of length
k. The pseudocode in Algorithm 1 represents the implemen-
tation of the widening process.

The algorithm takes as inputs the CFG of the current
widening W; augmented, for each node, with its language
of length k, and outputs the widening CFG W;;1 = W; i
(W;Ua (V;4+1)). The function markNodes, marks all the nodes
to be merged in one node if they present the same language
and it saves them in the list to_merge, while function gen-
Lang generates the new language of length k of each node in
the CFG W; 1.

Jjmp 6
push 4 Rule 1 (—)
pop eax push,pop — mov

mov [74538],eax
push [74538]
push 10

jmp 5

push 4

pop eax

mov [74538],eax
push [74538]
mov eax,10

pop eax

Algorithm 1 Widening algorithm

1: procedure WIDENING(W;, Vi1, k)
2: Wiy1 < graphUnion(W;, V4 1)

3 to_merge < markNodes(W; 1)

4 while to_merge # ¢ do

5 mergeNodes(to_merge, W;41)
6: to_merge < markNodes(W;11)
7

8

9

end while
genLang(W; 1, k)
return W,

10: end procedure

5.3 Rewriting rules learner

The learning algorithm implemented in MetaSign is a sim-
plified version of the algorithm proposed in [13] for learning
pure grammars from a set of words. It takes as input a CFG
and it follows three phases:

1. creating the positive set;
2. learning rewriting rules;
3. eliminating spurious inferred rules.

The positive set consists of a set of code variants where all
the instructions are abstracted. This set will be the input from
which the rewriting rules are inferred. The length min of the
smallest variant is calculated, i.e., the variant with the fewest
instructions. Then, all the paths of length min of the graph
that go from a root node (the first instruction) to the final
node (the ret instruction) are visited. For each path found,
the set of instructions related to the visited nodes are inserted
in the positive set. During this process, each visited edge will
be marked. When the path of length min has been found,
if all the edges are marked then the search is interrupted
without visiting other paths. Otherwise the variable min is
incremented.

Let (V;, V;) be a pair of variants, with |V;| < [V;|. The
idea of the learning algorithm is to add a production rule r of
the form V; — V. The rewriting rule r is inferred through
simplification rules between the two variants (V;, V;). The
pseudocode of the learning algorithm is presented in Algo-
rithm 2.

There are three kinds of simplification rules:
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Algorithm 2 Learner algorithm

1: procedure INFER(positive_set)
2: for (V;, V;) € positive_set, V; < V; do

3: rules =

4: while |V;| # 1 do

5: left_simplify(V;, V;)

6: if no change then

7: break

8: end if

9: end while

10: rules = rules U {V,- — VJ-}

11: while [V;| #1do > V;, V; restored to the previous value

12: right_simplify(V;, V;)

13: if no change then

14: break

15: end if

16: end while

17: rules = rules U {V; — V;}

18: while |V;| # 1do > V;, V; restored to the previous value

19: leftright_simplify(V;, V)

20: if no change then

21: break

22: end if

23: end while

24: rules = rules U {V, — VJ-} > Vi, V; restored to the previous
value

25:  end for

26:  removes_spurious(rules)
27:  return rules
28: end procedure

— left_simplify: compare the first instruction of V; and V;
and delete them if they are the same. This process con-
tinues until two different instructions are encountered: in
this case, if |V;| > 1 then the comparison restarts from
the last instruction of V; and V;, otherwise (|V;| = 1) the
rule is added to the set of inferred rules;

— right_simplify: it is similar to the previous one, but starts
from the last instruction;

— leftright_simplify: compare the first instruction of V; and
V; and, if they are equal, it deletes them and starts again
but from the bottom instruction of V; and V.

The algorithm applies the left_simplify repeatedly until arule
is added to the set of inferred rules and then it starts back with
right_simplify and, finally, with function leftright_simplify.

After the simplification phase, the algorithm produces a
set of rewriting rules of the form {x — y | |[x| = 1}. How-
ever, most of these rules are superfluous since they can be
generated by other inferred rules. The elimination algorithm
(removes_spurious) tries to reduce the right part of each
rewriting rule by applying all rewriting rules inferred in the
reduction form (from right to left). If at the end of this proce-
dure, the rule is reduced to another rule already in the inferred
set, then that rule can be eliminated.
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Fig. 10 Widening graph recognizing metamorphic variants of P (the
language length is set to 2)

6 Case studies

In this section, we present some results and considerations
applied to three case studies.

We start with a simple case study taken from [12] where
the authors manually built the graph accepting all the possible
metamorphic variants generated from the following program:
[P : mov e, 10] The hidden metamorphic engine applies the
following transformation rules:

R1 pushe; ;pop e < mover,e
R2 mov ey, e; ; pushey <+ pushe;
R3 pop ey ; mover,er < pop e

Note that, by substituting e with either an immediate value
Imm, a register or a memory value, in the above three rules
we obtain the first six rules presented in Sect. 5.1 which
are implemented in MetaSign. Moreover, both the exam-
ple in [12] and MetaSign abstract instructions by removing
the operands. MetaSign allows us to automatically generate
numerous metamorphic variants of program P and to auto-
matically derive the widening graph reported in Fig. 10.

Starting from this graph the learner of MetaSign automat-
ically derives the following set of rewriting rules:

mov -> [‘push’, ’pop’]
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Fig. 11 The graph obtained by the widening operator with language length set to 2

mov -> [‘mov’, ’‘mov’]
pop -> ['pop’, 'mov’]
push -> ['mov’, ’‘push’]

Our learner successfully captures the three rules used by
the unknown metamorphic malware and also a spurious rule
mov — mov, movinduced by the widening approximation.

In the second case study, we compare results obtained with
different widening seeds. To this end, we set an initial starting
program 7est (Fig. 12) which has no malicious behaviour: itis
just a set of random instructions. Then, we use the MetaSign
metamorphic engine to generate from Test 50 semantically
equivalent variants, by randomly applying rules presented in
Sect. 5.1. After that, we randomly select a subset of 25 code
variants. This subset is provided as input to the widening
process (with language length set to 2) and, finally, to the
learning algorithm. The resulting widening graph, produced
as output by the tool, is shown in Fig. 11. Unfortunately, the
learner could not infer any rewriting rules. At first glance,
this result may appear as an error in the implementation,

however, by looking more carefully at the possible paths of
the graph, we observe that all paths from any root node to the
ret node, starting from the minimum length (the smallest
variant in terms of instructions), will mark all the edges as
visited. For this reason, the set of positive examples contains
all code variants of the same length and therefore it is not
possible to infer any rewriting rules. This result is caused by
the numerous spurious variants injected by the widening pro-
cess that agglomerates the nodes with the same language of
length 2. In fact, due to the numerous cycles, i.e., regularities
inserted by the widening, a path from the root to the end node
of length less than any actual real variant, is “increased” until
reaching the minimum length (in this example equal to 20),
thus creating a spurious variant.

If we increase the level of precision of the widening by
setting the parameter of the language length to 3, we obtain
the graph in Fig. 13 and the following rewriting rules inferred
by the learner:
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0: mov [ebp], [espl] 11: mov eax, ebx
1: sub ebp, 4 12: push eax
2: push 100 13: pop [440303]
3: pop ecx 14: pop [443905]
4: cmp eax, excC 15: xor eax, O
5: xor eax, O 16: xor eax, eax
6: test eax, eax 17: nop
7: mov eax, 4 18: test eax, O
8: sub eax, 1 19: xor eax, O
9: cmp eax, ebx 20: ret
10: nop
Fig.12 Test program
cmp -> [‘cmp’, ‘mov’] mov -> [’'push’ ‘mov’ ]
mov -> [’'push’, ’'pop’] mov -> ['mov’, ‘push’]
mov -> [’pop’, 'mov’] nop -> ['pop’, ‘push’]
nop -> ['pop’, ’'‘mov’] nop -> ['nop’, ’'mov’]
pop -> [‘pop’, ‘push’] pop -> ['pop’, ‘mov’]
pop -> [‘mov’, 'pop’] pop -> ['nop’, 'mov’]
push -> [‘mov’, ’‘push’] sub -> ['mov’, ‘sub’]
test -> ['test’, ’'mov’] xor -> ['mov’, ’'xor’]

Clearly, by increasing the length of the widening language
seed, we obtain a graph with more nodes, hence, more pre-
cise. In fact, it is possible to infer the rewriting rules even if
there are numerous spurious rules still due to the presence of

spurious paths induced by the widening.

If we increase by another unit the level of precision of the
widening, setting the length of the language to 4 (Fig. 14) we
obtain the following rewriting rules inferred:

cmp -> [‘cmp’, ‘mov’] cmp -> ['mov’, ‘cmp’]
mov -> [’‘push’, ‘pop’] mov -> [‘mov’, ‘mov’]
nop -> ['nop’, ’'mov’] nop -> ['pop’, ’'push’]
pop -> [‘pop’, ‘mov’] pop -> [‘mov’, ‘pop’]
push -> [‘mov’, ’‘push’] sub -> ['mov’, ’‘sub’]
test -> [’test’, 'mov’'] xor -> ['mov’, ’‘xor’]

Thanks to the greater precision of the widening, this time
the inferred rules are more precise and, despite the presence
of rules that are not used by the metamorphic engine, they
represent an acceptable result. Moreover, setting language
length to 5, we obtain the same result as before. Observe that
the precision of the widening graph improves by increasing
the length of the language used as widening seed, and this
implies a downgrade in the performances of the algorithm in
terms of space and time consumption.

As third case study, we evaluate the learner outputs on
three samples using the precision and recall metrics. The
precision metric shows the percentage of how many correct
rewriting rules MetaSign has caught with respect to all the
inferred rules, while the recall metric is the fraction of the
total amount of correct rewriting rules that were retrieved by
the learner, with respect to the (unknown) rules actually used
by the metamorphic engine. Formally:

tP _ tP

Precision = ——
tP+ fP
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Fig. 13 The graph obtained by the widening operator with language
length set to 3

Fig. 14 The graph obtained by the widening operator with language
length set to 4



Learning metamorphic malware...

0: push ebp 10: sub ecx, 1
1: mov ebp, esp 11: cmp ecx, O
2: mov eax, [77800] 12: jne 8

3: mov ecx, [77900] 13: xor edx, O
4: lea edx, [77950] 14: and edx, O
5: mov ebx, eax 15: mov esp, ebp
6: add ebx, ecx 16: pop ebp

7: sub ebx, 1 17: nop

8: xor [ebx], 1 18: ret

9: sub ebx, 1

Fig. 15 XOR-Encryption routine

Table 1 Results for Test program

Widening Precision (%) Recall (%)
V3 33,56 100
V4 50,13 100
Vs 57,34 100
V6 64,10 100

Table 2 Results for Chernobyl/CHI code

Widening Precision (%) Recall (%)
V3 40,05 100
V4 57,42 100
Vs 72,72 100
V6 72,72 100

where ¢ P (true positive) is the number of correct rewrit-
ing rules inferred, f P (false positive) the number of wrong
rewriting rules inferred, while fN (false negative) is the
number of missed correct rewriting rules. We considered
three programs for evaluating the results: the 7est program
shown in Fig. 12, a fragment of the obfuscated Cher-
nobyl/CHI malware code shown in Fig. 1 (the second on
the left), and a simple XOR-Encryption routine, reported
in Fig. 15, where we inserted some dead code in order to
trigger more rewriting rules. For each sample, we generated
200 variants through our MetaSign metamorphic engine. On
Test and Chernobyl/CHI codes, MetaSign was able to apply
8 of the 13 rewriting rules implemented, while 10 on the
XOR-Encryption routine. Clearly, this result depends on the
program instructions. For example, MetaSign can not apply
neither the rewriting rule cmp — mov, cmp nor and —
mov, and on the Chernobyl/CHI code, because the instruc-
tions cmp and and are not used. Finally, for each program,
we randomly selected three (possibly non-disjoint) subsets
of 50 variants and we provide them as inputs to the learner
algorithm. Tables 1, 2 and 3 report the arithmetic mean of
precision and recall of the results of the learning on the three
subsets for the different widening seed.

It is worth to note that, this extended set of applications
supports the observation made in the previous case study:
by increasing the widening seed, we get higher precision.

Table 3 Results for XOR-Encryption routine

Widening Precision (%) Recall (%)
V3 34,89 90
V4 44,47 90
Vs 58,52 90
V6 58,52 90

However, when running the experiments with the widening
Ve on Chernobyl/CHI and XOR-Encryption, we obtain the
same results for precision and recall as with widening V5.
This happens because we have reached a sort of fixpoint on
the precision that we can obtain with the considered learning
algorithm. Better results can be achieved by exploring other
algorithms for learning grammars from positive examples.
Nonetheless, on the Test and Chernobyl/CHI we caught all
the rewriting rules used by the metamorphic engine, while
on XOR-Encryption, on average, we missed one rule on the
three subsets.

7 Discussion and future directions

The results of the previous section are promising for three
main reasons. Firstly, we developed a tool capable of auto-
matically inferring rewriting rules starting from a widening
approximation, i.e., without the need of any manual analy-
sis. We can tune the widening precision through the language
length parameter in order to get better results for the inferred
rules by the learner. Obviously, an important role is also
played by the quality of the learner, which can be a limit when
amore precise results is needed. Second, the implementation
is parametric on both the rewriting rules implemented and the
abstraction function on instructions. This means that, it can
be easily editable in order to test new transformation rules
with different abstractions. Finally, the third reason consists
in the way we can populate a set of input test: the metamor-
phic engine implemented in MetaSign allows us to easily
create numerous variants according the engine. Therefore,
the quality of the learner can be quickly tested on the gener-
ated metamorphic variants.

On the other hand, we are aware that numerous future
works need to be accomplish in order to complete the pro-
cess of our new methodology in analyzing metamorphic
behaviors. As a priority of future work, we will try to apply
this tool to a set of real malware variants. Currently, our
proposed tool reads program code written in our intermedi-
ate x86-like language. The conversion process should be
automated by an ad-hoc disassembler, similar to the one
implemented in MetaPHOR. In this way, an automated meta-
morphic signature extraction program can be implemented:
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given a set of disassembled payload of metamorphic vari-
ants, or parts of them, generated by the same metamorphic
engine, we can feed them to MetaSign in order to extract a
possible metamorphic signature, i.e., a set of rewriting rules
used by the unknown metamorphic engine. In this work,
we considered one level of abstraction on the instructions,
that is, we discard the operands of each assembly instruc-
tion. Clearly, this strong abstraction influences the accuracy
results since MetaSign is more likely to capture a rule by
visiting a widening CFG where all nodes, i.e., instructions,
have no arguments. It would be interesting to consider dif-
ferent abstractions assigning to the operands, for example,
symbolic values such as those of [31]. We would like to
point out that MetaSign is implemented from scratch, i.e.,
with no code reuse from other implemented software. Space
and time complexity of the whole program need to be opti-
mized as this task was not a priority for our purposes. The
current implementation can be extended with new rewrit-
ing rules and a new learner algorithm. Currently, only rules
having form {x — y,y — x | |[x| = 1 A|y| = 2} are imple-
mented. The learning algorithm is a critical core part, as the
third case study highlighted: an optimal learner algorithm
should exploit the tuning of the widening language length
parameter. Moreover, the new learner needs to be able to
learn, in an approximate way, more complex rewriting rules
in order to catch more sophisticated metamorphic engines
and it should be able to generate a sound metamorphic signa-
ture, i.e., a set of rules that generate all the real metamorphic
variants, namely, all the possible variants that the unknown
metamorphic engine can create, admitting some false posi-
tives (spurious variants). Finally, new more expressive formal
languages should be considered modeling code mutations,
such as, e.g., indexed grammars [32,33] or context-sensitive
grammars, and their respective learning algorithms.

8 Conclusion

Metamorphic attacks require new semantic models and
analysis for coping with unknown obfuscation strategies,
generated by an unknown metamorphic engine. In order to
model the self-modifying nature of a metamorphic malware,
it is necessary to provide a model of program behavior that
allows the program to change during execution. In this work,
we tried to capture the behavior of the metamorphic engine
itself, namely we tried to find a set of rules that allow us to
predict possible mutations of code variants starting from a set
of examples. To this end, we presented MetaSign, an auto-
mated metamorphic signature extraction that has three main
functions: metamorphic engine, widening of code variants
and learning of rewriting rules. Thanks to the metamorphic
engine, it is possible to quickly generate numerous variants
using an intermediate x86-like language. These variants are
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created by randomly applying rewriting rules implemented
in MetaSign. Starting from a set of metamorphic code vari-
ants, the goal is to capture the unknown rewriting rules used
by the metamorphic engine to generate them. MetaSign uses
a widening operator to generate a CFG that approximates
all the variants of the input set. Rewriting rules are then
represented as productions of a pure context-free grammar.
From the learning algorithm and the elimination of super-
fluous rewriting rules algorithm, it is possible to obtain a
set of rules that describes, in an approximate way, the pos-
sible evolution of code variants. The experimental results
show two strictly correlated key points. The first point con-
sists in the choice of the language length parameter of the
widening operator which affects the precision of the learned
rules. The lower the value is, the more the nodes are merged
together because they are more likely to present the same
language. In this case, the presence of spurious paths will be
definitely higher, and, therefore, there will be less precision
in the results inferred by the learner. On the contrary, the
higher the length of the language is, the greater is the pre-
cision of the widening CFG, namely, fewer spurious paths.
Obviously, the increase in precision comes at a cost in terms
of time execution and memory consumption. The second key
point involve the learner implementation which has to exploit
a more detailed widening CFG in terms of instructions.
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